Skip to main content

Abstract

Mercury (Hg) is one of the most toxic heavy metals. From a biological perspective it has no redeeming virtue, for, unlike a number of other heavy metals, it is not known to perform any essential biochemical function (Bowen, 1966). Traces of Hg are ubiquitous in soils, natural waters, sediments, organisms and air (Jonasson and Boyle, 1972), and anomalously high Hg concentrations occur in many ecosystems owing to Hg pollution (a serious, widespread problem), natural Hg enrichment in certain rocks, distinctive properties of Hg such as its tendency to form highly stable complexes and compounds (including species that are easily taken up by organisms but not readily excreted), natural processes (e.g. methylation) which enhance the bioavailability of Hg, increased bioavailability of Hg due to environmental changes caused by human activities, and efficient accumulation of Hg by organisms and certain natural materials, such as soil organic matter and fine-grained sediments. Moreover, Hg is a relatively volatile element, and this accounts, in large part, for its wide distribution.

And loathsome canker lives in sweetest bud.

Shakespeare

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiken, G.R., McKnight, D.M., Wershaw, R.L. and MacCarthy, P. (1985) Humic Substances in Soil, Sediment, and Water, John Wiley & Sons (Wiley Interscience), New York, Toronto, Chichester, Brisbane, Singapore.

    Google Scholar 

  • Akagi, H., Miller, D.R. and Kudo, A. (1977) Photochemical transformation of mercury, in Distribution and transport of pollutants in flowing water ecosystems: Ottawa River project, final report, Vol. 1, Chapter 16, National Research Council of Canada, Ottawa.

    Google Scholar 

  • Alberts, J.J., Schindler, J.E., Miller, R.W. and Nutter, D.E. Jr (1974) Elemental mercury evolution mediated by humic acid, Science 184, 895–897.

    Article  CAS  Google Scholar 

  • Alexander, D.G. (1974) Mercury effects on swimming and metabolism of trout. Proc. Int. Conf on Transport of Persistent Chemicals in Aquatic Ecosystems (Ottawa, Canada, 1–3 May, 1974), Sect. Ill, p. 65–69.

    Google Scholar 

  • Allard, B. and Arsenie, I. (1991) Abiotic reduction of mercury by humic substances in aquatic system — an important process for the mercury cycle, Water Air Soil Polin 56, 457–464.

    Article  CAS  Google Scholar 

  • Amyot, M., Mierle, G., Lean, D.R.S. and McQueen, D.J. (1994) Sunlight-induced formation of dissolved gaseous mercury in lake waters, Environ. Sci. Technol. 28, 2366–2371.

    Article  CAS  Google Scholar 

  • Anderson, M.R., Scruton, D.A., Williams, U.P. and Payne, J.F. (1995) Mercury in fish in the Smallwood Reservoir, Labrador, twenty one years after impoundment, Water Air Soil Polin 80, 927–930.

    Article  CAS  Google Scholar 

  • Andersson, A. (1979) Mercury in soils, in The Bio geochemistry of Mercury in the Environment, (ed. J.O. Nriagu), Elsevier/North-Holland Biomedical Press, Amsterdam, New York, Oxford, pp. 79–112.

    Google Scholar 

  • Andersson, P., Borg, H. and Kärrhage, P. (1995) Mercury in fish muscle in acidified and limed lakes. Water Air Soil Polin 80, 889–892.

    Article  Google Scholar 

  • Andren, A.W. and Harriss, R.C. (1975) Observations on the association between mercury and organic matter dissolved in natural waters, Geochim. Cosmochim. Acta 39, 1253–1257.

    Article  CAS  Google Scholar 

  • Armstrong, F.A.J, and Hamilton, A.L. (1973) Pathways of mercury in a polluted Northwestern Ontario lake, in Trace Metals and Metal-Organic Interactions in Natural Waters, (ed. P.C. Singer), Ann Arbor Science Publishers, Ann Arbor, pp. 131–156

    Google Scholar 

  • Armstrong, F.A.J, and Scott, D.P. (1979) Decrease in mercury content of fishes in Ball Lake, Ontario, since imposition of controls on mercury discharges. J. Fish. Res. Board Can. 36, 670–672.

    Article  CAS  Google Scholar 

  • Aula, I., Braunschweiler, H., Leino, T. et al. (1994) Levels of mercury in the Tucurui Reservoir and its surrounding area in Para, Brazil, in Mercury Pollution, (eds C.J. Watras and J.W. Huckabee), Lewis Publishers, Boca Raton, Ann Arbor, London, Tokyo, pp. 21–40.

    Google Scholar 

  • Baldi, F., Filipelli, M. and Olson, G.J. (1989) Biotransformation of mercury by bacteria isolated from a river collecting cinnabar mine waters, Microbiol. Ecol. 17, 263–274.

    Article  CAS  Google Scholar 

  • Baldi, F., Semplici, F. and Filippelli, M. (1991) Environmental applications of mercury resistant bacteria, Water Air Soil Polin 56, 465–475.

    Article  CAS  Google Scholar 

  • Baldi, F., Parati, F., Semplici, F. and Tandoi, V. (1993a) Biological removal of inorganic Hg(II) as gaseous elemental Hg(0) by continuous culture of a Hg-resistant Pseudomonas putida strain FB-1,. World J. Microbiol. Biotechnol. 9, 275–279.

    Article  CAS  Google Scholar 

  • Baldi, F., Pepi, M. and Filippelli, M. (1993b) Methylmercury resistance in Desulfovibrio desulfuricans strains in relation to methylmercury degradation, Appl. Environ. Microbiol. 59, 2479–2485.

    CAS  Google Scholar 

  • Baldi, F., Parati, F. and Filippelli, M. (1995) Dimethylmercury and dimethylmercury-sulfide of microbial origin in the biogeochemical cycle of Hg. Water Air Soil Polin 80, 805–815.

    Article  CAS  Google Scholar 

  • Balzani, V. and Carassiti, V. (1970) Photochemistry of Coordination Compounds, Academic Press, New York, London.

    Google Scholar 

  • Barkay, T., Turner, R.R., Vanden Brook, A. and Liebert, C. (1991) The relationships of Hg(II) volatilization from a freshwater pond to the abundance of mer genes in the gene pool of the indigenous microbial community, Microbiol. Ecol. 21, 151–161.

    Article  CAS  Google Scholar 

  • Bartlett, P.D. and Craig, P.J. (1979) Methylation processes for mercury in estuarine sediments, in Heavy Metals in the Environment (Proc. Int. Conf. on Management and Control of Heavy Metals in the Environment, London, Sept., 1979), CEP Consultants, Edinburgh, pp. 354–355.

    Google Scholar 

  • Baughman, G.L., Gordon, J.A., Wolfe, N.L. and Zepp, R.G. (1973) Chemistry of Organomercurials in Aquatic Systems, Ecological Research Series, EPA-660/3–73–012, National Environmental Research Center, Office of Research and Development, US Environmental Protection Agency, Corvallis.

    Google Scholar 

  • Baxter, R.M. and Carey, J.H. (1982) Reactions of singlet oxygen in hurnic waters, Freshwater Biol 12, 285–292.

    Article  CAS  Google Scholar 

  • Baxter, R.M. and Carey, J.H. (1983) Evidence for photochemical generation of superoxide ion in humic waters. Nature 306, 575–576.

    Article  CAS  Google Scholar 

  • Beijer, K. and Jernelöv, A. (1979) Methylation of mercury in aquatic environments, in The Biogeochemistry of Mercury in the Environment, (ed. J.O. Nriagu), Elsevier/North-Holland Biomedical Press, Amsterdam, Oxford, New York, pp. 203–210.

    Google Scholar 

  • Benes, P. and Havlik, B. (1979) Speciation of mercury in natural waters, in The Biogeochemistry of Mercury in the Environment, (ed. J.O. Nriagu), Elsevier/North-Holland Biomedical Press, Amsterdam, Oxford, New York, pp. 175–202.

    Google Scholar 

  • Bertilsson, L. and Neujahr, H.Y. (1971) Methylation of mercury compounds by cobalamin, Biochem. 10, 2805–2808.

    Article  CAS  Google Scholar 

  • Bidstrup, P.L. (1964) Toxicity of Mercury and its Compounds, Elsevier, Amsterdam, London, New York.

    Google Scholar 

  • Bishop, J.N. and Neary, B.P. (1974) The form of mercury in freshwater fish. Proc. Int. Conf. on Transport of Persistent Chemicals in Aquatic Ecosystems (Ottawa, Canada, 1–3 May, 1974), Sect. III, pp. 25–29.

    Google Scholar 

  • Bishop, J.N. and Neary, B.P. (1976) Mercury Levels in Fish from Northwestern Ontario, 1970–1975, Ministry of the Environment, Ontario, Canada.

    Google Scholar 

  • Bisogni, J.J. (1979) Kinetics of methylmercury formation and decompositon in aquatic environments, in The Biogeochemistry of Mercury in the Environment, (ed. J.O. Nriagu), Elsevier/North-Holland Biomedical Press, Amsterdam, Oxford, New York, pp. 211–230.

    Google Scholar 

  • Bisogni, J.J. Jr and Lawrence, A.W. (1975) Kinetics of mercury methylation in aerobic and anaerobic aquatic environments, J. Water Polin Control Fed. 47, 135–152.

    CAS  Google Scholar 

  • Björnberg, A., HÃ¥kanson, L. and Lundbergh, K. (1988) A theory on the mechanisms regulating the bioavailability of mercury in natural waters, Environ. Polin 49, 53–61.

    Article  Google Scholar 

  • Bloom, N.S. and Watras, C.J. (1989) Observations of methylmercury in precipitation, Sei. Total Environ. 87/88, 199–207.

    Article  Google Scholar 

  • Bloom, N.S., Watras, C.J. and Hurley, J.P. (1991) Impact of acidification on the methylmercury cycle of remote seepage lakes, Water Air Soil Polin 56, 477–491.

    Article  CAS  Google Scholar 

  • Blum, J.E. and Bartha, R. (1980) Effect of salinity on methylation of mercury, Bull. Environ. Contam. Toxicol. 25, 404–408.

    Article  CAS  Google Scholar 

  • Bodaly, R.A., Hecky, R.E. and Fudge, R.J.P. (1984) Increases in fish mercury levels in lakes flooded by the Churchill River diversion, northern Manitoba, Can. J. Fish. Aquat. Sci. 41, 682–691.

    Article  CAS  Google Scholar 

  • Bodaly, R.A., Rudd, J.W.M., Fudge, R.J.P. and Kelly, C.A. (1993) Mercury concentrations in fish related to size of remote Canadian Shield lakes, Can. J. Fish. Aquat. Sci. 50, 980–987.

    Article  CAS  Google Scholar 

  • Bothner, M.H. and Carpenter, R. (1973) Sorption-desorption reactions of mercury with suspended matter in the Columbia River. Proc. Symp. Radioactive Contamination of the Marine Environment (Vienna, Austria, 1972), IAEA, pp. 73–87.

    Google Scholar 

  • Boudou, A. and Ribeyre, F. (1981) Comparative study of the trophic transfer of two mercury compounds — HgCl2 and CH3HgCl — between Chlorella vulgaris and Daphnia magna. Influence of temperature. Bull. Environ. Contam. Toxicol. 27, 624–629.

    Article  CAS  Google Scholar 

  • Boudou, A., Delnomdedieu, M., Georgescauld, D. et al. (1991) Fundamental roles of biological barriers in mercury accumulation and transfer in freshwater ecosystems, Water Air Soil Polin 56, 807–821.

    Article  CAS  Google Scholar 

  • Bowen, H.J.M. (1966) Trace Elements in Biochemistry, Academic Press, London, New York.

    Google Scholar 

  • Branfireun, B.A., Heyes, A. and Roulet, N.T. (1996) The hydrology and methylmer-cury dynamics of a Precambrian Shield headwater peatland, Water Resources Res. 32, 1785–1794.

    Article  CAS  Google Scholar 

  • Brosset, C. and Lord, E. (1991) Mercury in precipitation and ambient air — a new scenario. Water Air Soil Polin 56, 493–506.

    Article  CAS  Google Scholar 

  • Brouard, D., Doyon, J.-F. and Schetagne, R. (1994) Amplification of mercury concentrations in lake whitefish (Coregonus clupeaformis) downstream from the La Grande 2 Reservoir, James Bay, Québec, in Mercury Pollution, (eds C.J. Watras and J.W. Huckabee), Lewis Publishers, Boca Raton, Ann Arbor, London, Tokyo, pp. 369–379.

    Google Scholar 

  • Brouzes, R.J.P., McLean, R.A.N, and Tomlinson, G.H. (1977) The link between pH of natural waters and the mercury content of fish. Report presented at meeting of US National Academy of Sciences (National Research Council Panel on Mercury), 3 May, 1977, Washington, DC.

    Google Scholar 

  • Budavari, S., O’Neil, M.J., Smith, A. and Heckelman, P.E. (eds) (1989) The Merck Index, 11th edn, Merck & Co., Rahway.

    Google Scholar 

  • Burkett, R.D. (1974) The influence of temperature on uptake of methylmercury-203 by bluntnose minnows, Pimephales notatus (Rafinesque), Bull. Environ. Contam. Toxicol. 12, 703–709.

    Article  CAS  Google Scholar 

  • Burrows, W.D. and Krenkel, P.A. (1973) Studies on uptake and loss of methylmercury-203 by bluegills (Lepomis macrochiros Raf.), Environ. Sci. Technol. 7, 1127–1130.

    Article  CAS  Google Scholar 

  • Cabana, G., Tremblay, A., Kalff, J. and Rasmussen, J.B. (1994) Pelagic food chain structure in Ontario lakes: a determinant of mercury levels in lake trout (Salvelinus namaycush), Can. J. Fish. Aquat. Sci. 51, 381–389.

    Article  CAS  Google Scholar 

  • Carry, A.J. and Malone, S.F. (1979) The chemistry of mercury in biological systems, in The Bio geochemistry of Mercury in the Environment, (ed. J.O. Nriagu), Elsevier/North-Holland Biomedical Press, Amsterdam, Oxford, New York, pp. 433–479.

    Google Scholar 

  • Chen, J., Tang, F. and Wang, F. (1995) Mobilization of mercury from estuarine suspended particulate matter: a case study in the Yalujiang estuary, northeast China, Water Qual. Res. J. Can. 30, 25–32.

    CAS  Google Scholar 

  • Choi, S.-C. and Bartha, R. (1993) Cobalamin-mediated mercury methylation by Desulfovibrio desulfuricans LS. Appl. Environ. Microbiol. 59, 290–295.

    CAS  Google Scholar 

  • Choi, S.-C, Chase, T. Jr and Bartha, R. (1994) Metabolic pathways leading to mercury methylation in Desulfovibrio desulfuricans LS. Appl. Environ. Microbiol. 60, 4072–4077.

    CAS  Google Scholar 

  • Choudhry, G.G. (1984) Humic Substances, Gordon and Breach Science Publishers, New York, London, Paris, Montreux, Tokyo.

    Google Scholar 

  • Christman, R.F. and Gjessing, E.T. (eds) (1983) Aquatic and Terrestrial Humic Materials, Ann Arbor Science (Butterworth Group), Ann Arbor.

    Google Scholar 

  • Compeau, G. and Bartha, R. (1984) Methylation and demethylation of mercury under controlled redox, pH, and salinity conditions, Appl. Environ. Microbiol. 48, 1203–1207.

    CAS  Google Scholar 

  • Compeau, G. and Bartha, R. (1985) Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment, Appl. Environ. Microbiol. 50, 498–502.

    CAS  Google Scholar 

  • Compeau, G. and Bartha, R. (1987) Effect of salinity on mercury-methylating activity of sulfate-reducing bacteria in estuarine sediments, Appl. Environ. Microbiol. 53, 261–265.

    CAS  Google Scholar 

  • Cope, W.G., Wiener, J.G. and Rada, R.G. (1990) Mercury accumulation in yellow perch in Wisconsin seepage lakes: relation to lake characteristics, Environ. Toxicol. Chem. 9, 931–940.

    Article  CAS  Google Scholar 

  • Cotton, F.A. and Wilkinson, G. (1988) Advanced Inorganic Chemistry, 5th edn, Wiley-Interscience (John Wiley & Sons), New York, Toronto, Chichester, Brisbane, Singapore.

    Google Scholar 

  • Craig, P.J. and Bartlett, P.D. (1978) The role of hydrogen sulphide in environmental transport of mercury. Nature 275, 635–637.

    Article  CAS  Google Scholar 

  • Craig, P.J. and Moreton, P.A. (1986) Total mercury, methyl mercury and sulphide levels in British estuarine sediments, III.Water Res. 20, 1111–1118.

    Article  CAS  Google Scholar 

  • De Filippis, L.F. and Pallaghy, C.K. (1975) A simple model for the non-enzymatic reduction and alkylation of mercuric salts in biological systems. Bull. Environ. Contam. Toxicol. 14, 32–37.

    Article  Google Scholar 

  • de Freitas, A.S.W. and Hart, J.S. (1975) Effect of body weight on uptake of methyl mercury by fish, Water Quality Parameters, ASTM STP 573, American Society for Testing and Materials, pp. 356–363.

    Google Scholar 

  • de Freitas, A.S.W., Qadri, S.U. and Case, B.E. (1974) Origins and fate of mercury compounds in fish, in Proc. Int. Conf. on Transport of Persistent Chemicals in Aquatic Ecosystems (1–3 May, 1974, Ottawa, Canada), Sect. III, pp. 31–36.

    Google Scholar 

  • de Freitas, A.S.W., Gidney, M.A.J., McKinnon, A.E. and Norstrom, R.J. (1977) Factors affecting whole-body retention of methyl mercury in fish, in Biological Implications of Metals in the Environment, (eds H. Drucker and R.E. Wildung), Proceedings 15th Annual Hanford Life Sciences Symposium, 29 September-1 October, 1975, Richland, Washington, Technical Information Center, Energy Research and Development Administration, US Department of Commerce, Springfield, Virginia, pp. 441–451.

    Google Scholar 

  • de Groot, A.J. and Allersma, E. (1975) Field observations on the transport of heavy metals in sediments, in Heavy Metals in the Aquatic Environment, (ed. P. A. Krenkel), Pergamon Press, Oxford, New York, Toronto, Braunschweig, Sydney, pp. 85–101.

    Google Scholar 

  • de Groot, A.J., de Goeij, J.J.M, and Zegers, C. (1971) Contents and behaviour of mercury as compared with other heavy metals in sediments from the rivers Rhine and Ems. Geologie en Mijnbouw 50, 393–398.

    Google Scholar 

  • DeSimone, R.E., Penley, M.W., Charbonneau, L. et al. (1973) The kinetics and mechanism of cobalamin-dependent methyl and ethyl transfer to mercuric ion. Biochim. Biophys. Acta 304, 851–863.

    Article  CAS  Google Scholar 

  • Dtri, F. (1971) Comparison of mercury levels in an oligotrophic and a eutrophic lake, Marine Technol. Soc. J. 5, 10–14.

    Google Scholar 

  • D’Itri, F. (1972) The Environmental Mercury Problem, Chemical Rubber Co. Press, Cleveland.

    Google Scholar 

  • D’Itri, F. (1991) Mercury contamination — what we have learned since Minamata, Environ. Monitoring Assess. 19, 165–182.

    Article  Google Scholar 

  • D’Itri, F.M., Andren, A.W., Doherty, R.A. et al. (1978) An Assessment of Mercury in the Environment, National Academy of Sciences, Washington, DC.

    Google Scholar 

  • Douglas, B.E. and McDaniel, D.H. (1965) Concepts and Models of Inorganic Chemistry, Blaisdell, Waltham (Mass.), Toronto, London.

    Google Scholar 

  • Dyrssen, D. and Wedborg, M. (1991) The sulphur-mercury(II) system in natural waters, Water Air Soil Polin 56, 507–519.

    Article  Google Scholar 

  • Engstrom, D.R., Swain, E.B., Henning, T.A. et al. (1994) Atmospheric mercury deposition to lakes and watersheds, in Environmental Chemistry of Lakes and Reservoirs, (ed. L.A. Baker), pp. 33–66.

    Chapter  Google Scholar 

  • Evans, R.D. (1986) Sources of mercury contamination in the sediments of small headwater lakes in south-central Ontario, Canada. Arch. Environ. Contam. Toxicol. 15, 505–512.

    Article  CAS  Google Scholar 

  • Fagerström, T. and Jernelöv, A. (1972) Some aspects of the quantitative ecology of mercury. Water Res. 6, 1193–1202.

    Article  Google Scholar 

  • Farrah, H. and Pickering, W.F. (1978) The sorption of mercury species by clay minerals. Water, Air, Soil Polin 9, 23–31.

    Article  CAS  Google Scholar 

  • Farrell, R.E., Germida, J.J. and Huang, P.M. (1990) Biotoxicity of mercury as influenced by mercury(II) speciation, Appl. Environ. Microbiol. 56, 3006–3016.

    CAS  Google Scholar 

  • Faust, B.C. (1992) The octanol/water distribution coefficients of methylmercuric species: the role of aqueous-phase chemical speciation, Environ. Toxicol. Chem. 11, 1373–1376.

    Article  CAS  Google Scholar 

  • Feick, G., Home, R.A. and Yeapple, D. (1972) Release of mercury from contaminated freshwater sediments by the runoff of road deicing salt, Science 175, 1142–1143.

    Article  CAS  Google Scholar 

  • Fimreite, N. and Reynolds, L.M. (1973) Mercury contamination of fish in Northwestern Ontario,. J. Wildlife Manage. 37, 62–68.

    Article  CAS  Google Scholar 

  • Fitzgerald, W.F., Mason, R.P. and Vandal, G.M. (1992) Atmospheric cycling and air-water exchange of mercury over mid-continent lakes, in The Deposition and Fate of Trace Metals in Our Environment, (eds E.S. Verry and S.J. Vermette), Forest Service (US Department of Agriculture), North Central Forest Experiment Station, pp. 139–156.

    Google Scholar 

  • Forbes, E.A., Posner, A.M. and Quirk, J.P. (1974) The specific adsorption of inorganic Hg(II) species and Co(III) complex ions on goethite, J. Colloid Interface Sci. 49, 403–409.

    Article  CAS  Google Scholar 

  • Friske, P.W.B. and Coker, W.B. (1995) The importance of geological controls on the natural distribution of mercury in lake and stream sediments across Canada, Water Air Soil Polin 80, 1047–1051.

    Article  CAS  Google Scholar 

  • Gagnon, C, Pelletier, É., Mucci, A. and Fitzgerald, W.F. (1996) Diagenetic behavior of methylmercury in organic-rich coastal sediments, Limnol. Oceanogr. 41,428–434.

    Article  CAS  Google Scholar 

  • Ganther, H.E., Goudie, C, Sunde, M.L. et al. (1972) Selenium: relation to decreased toxicity of methylmercury added to diets containing tuna, Science 175, 1122–1124.

    Article  CAS  Google Scholar 

  • Gavis, J. and Ferguson, J.F. (1972) The cycling of mercury through the environment. Water Res. 6, 989–1008.

    Article  CAS  Google Scholar 

  • Gottofrey, J. and Tjälve, H. (1991) Effect of lipophilic complex formation on the uptake and distribution of Hg2+ and CH3-Hg+ in brown trouts (Salmo trutta): studies with some compounds containing sulphur ligands. Water Air Soil Polin 56, 521–532.

    Article  CAS  Google Scholar 

  • Grieb, T.M., Driscoll, CT., Gloss, S.P. et al (1990) Factors affecting mercury accumulation in fish in the upper Michigan peninsula, Environ. Toxicol. Chem. 9, 919–930.

    Article  CAS  Google Scholar 

  • Hahne, H.C.H, and Kroontje, W. (1973) Significance of pH and chloride concentration on behavior of heavy metal pollutants: mercury(II), zinc(II), and lead(II), /. Environ. Qual. 2, 444–450.

    Article  CAS  Google Scholar 

  • Haines, T.A., Komov, V.T. and Jagoe, C.H. (1994) Mercury concentration in perch (Perca fluviatilis) as influenced by lacustrine physical and chemical factors in two regions of Russia, in Mercury Pollution, (eds C.J. Watras and J.W. Huckabee), Lewis Publishers, Boca Raton, Ann Arbor, London, Tokyo, pp. 397–407.

    Google Scholar 

  • HÃ¥kanson, L. (1980) The quantitative impact of pH, bioproduction and Hg-contami-nation on the Hg-content of fish (pike), Environ. Polin (Series B) 1, 285–304.

    Google Scholar 

  • HÃ¥kanson, L., Nilsson, Ã…. and Andersson, T. (1988) Mercury in fish in Swedish lakes. Environ. Polin 49, 145–162.

    Article  Google Scholar 

  • Hallberg, R. (1978) Metal-organic interaction at the redoxcline, in Environmental Bio geochemistry and Geomicrobiology, Vol. 3, (ed. W.E. Krumbein), Ann Arbor Science Publishers, Ann Arbor (Michigan), pp. 947–953.

    Google Scholar 

  • Hamdy, M.K. and Noyés, O.R. (1975) Formation of methyl mercury by bacteria, Appl. Microbiol. 30, 424–432.

    CAS  Google Scholar 

  • Hamdy, M.K. and Wheeler, S.R. (1978) Inhibition of bacterial growth by mercury and the effects of protective agents, Bull. Environ. Contam. Toxicol. 20, 378–386.

    Article  CAS  Google Scholar 

  • Hamdy, M.K., Noyes, O.R. and Wheeler, S.R. (1977) Effect of mercury on bacteria: protection and transmethylation, in Biological Implications of Metals in the Environment (Proceedings 15th Annual Hanford Life Sciences Symposium, Richland, Washington, 29th September-lst October, 1975), (eds H. Drucker and R.E. Wildung,), Technical Information Center, Energy Research and Development Administration, US Department of Commerce, Springfield, Virginia, pp. 20–35.

    Google Scholar 

  • Hecky, R.E., Bodaly, R.A., Strange, N.E. et al. (1987) Mercury bioaccumulation in yellow perch in limnocorrals simulating the effects of reservoir formation, in Technical Appendices to the Summary Report, Canada-Manitoba Agreement on the Study and Monitoring of Mercury in the Churchill River Diversion, Vol. 2, Chapter 7, Governments of Canada and Manitoba.

    Google Scholar 

  • Hecky, R.E., Ramsey, DJ., Bodaly, R.A. and Strange, N.E. (1991) Increased methylmercury contamination in fish in newly formed freshwater reservoirs, in Advances in Mercury Toxicology, (eds T. Suzuki, N. Imura and T.W. Clarkson), Plenum Press, New York, London, pp. 33–52.

    Google Scholar 

  • Heisinger, J.F., Hansen, CD. and Kim, J.H. (1979) Effect of selenium dioxide on the accumulation and acute toxicity of mercuric chloride to goldfish. Arch. Environ. Contam. Toxicol. 8, 279–283.

    Article  CAS  Google Scholar 

  • Heit, M., Tan, Y., Klusek, C. and Burke, J.C. (1981) Anthropogenic trace elements and polycyclic aromatic hydrocarbon levels in sediment cores from two lakes in the Adirondack acid lake region, Water Air Soil Polin 15, AAI-A6A.

    Google Scholar 

  • Hintelmann, H. and Wilken, R.-D. (1995) Levels of total mercury and methylmercury compounds in sediments of the polluted Elbe River: influences of seasonally and spatially varying environmental factors, Sei. Total Environ. 166, 1–10.

    Article  CAS  Google Scholar 

  • Hintelmann, H., Hempel, M. and Wilken, R.D. (1995a) Observation of unusual organic mercury species in soils and sediments of industrially contaminated sites. Environ. Sci. Technol. 29, 1845–1850.

    Article  CAS  Google Scholar 

  • Hintelmann, H., Welbourn, P.M. and Evans, R.D. (1995b) Binding of methylmercury compounds by humic and fulvic acids. Water Air Soil Polin 80, 1031–1034.

    Article  CAS  Google Scholar 

  • Hogg, T.J., Stewart, J.W.B. and Bettany, J.R. (1978) Influence of the chemical form of mercury on its adsorption and ability to leach through soils, J. Environ. Qual. 7, 440–445.

    Article  CAS  Google Scholar 

  • Huckabee, J.W., Elwood, J.W. and Hildebrand, S.G. (1979) Accumulation of mercury in freshwater biota, in The Biogeochemistry of Mercury in the Environment, (ed. J.O. Nriagu), Elsevier/North-Holland Biomedical Press, Amsterdam, Oxford, New York, pp. 277–302.

    Google Scholar 

  • Hudson, R.J.M., Gherini, S.A., Watras, C.J. and Porcella, D.B. (1994) Modeling the biogeochemical cycle of mercury in lakes: the mercury cycling model (MCM) and its application to the MTL Study lakes, in Mercury Pollution (eds C.J. Watras and J.W. Huckabee), Lewis Publishers, Boca Raton, Ann Arbor, London, Tokyo, pp. 473–523.

    Google Scholar 

  • Hudson, R.J.M., Gherini, S.A., Fitzgerald, W.F. and Porcella, D.B. (1995) Anthropogenic influences on the global mercury cycle: a model-based analysis, Water Air Soil Polin 80, 265–272.

    Article  CAS  Google Scholar 

  • Huey, C, Brinckman, F.E., Grim, S. and Iverson, W.P. (1974) The role of tin in bacterial methylation of mercury. Proc. Int. Conf. on Transport of Persistent Chemicals in Aquatic Ecosystems (Ottawa, Canada, 1–3 May, 1974), Sect. II, pp. 73–78.

    Google Scholar 

  • Hultberg, H., Parkman, H. and Renberg, I. (1994) Recent decrease in atmospheric deposition of total mercury as reflected by total and methyl mercury profiles in profundal sediments in one acid and one limed lake on the Swedish west coast [abstract], in Abstracts, International Conference on Mercury as a Global Pollutant (Whistler, British Columbia (Canada), July, 1994).

    Google Scholar 

  • Inoko, M. (1981) Studies on the photochemical decomposition of organomercurials -methylmercury(II) chloride. Environ. Polin (Ser. B) 2, 3–10.

    CAS  Google Scholar 

  • Inoue, Y. and Munemori, M. (1979) Coprecipitation of mercury(II) with iron(III) hydroxide, Environ. Sci. Technol. 13, 443–445.

    Article  CAS  Google Scholar 

  • Jackson, K.S., Jonasson, I.R. and Skippen, G.B. (1978) The nature of metals-sediment-water interactions in freshwater bodies, with emphasis on the role of organic matter, Earth-Science Rev. 14, 97–146.

    Article  CAS  Google Scholar 

  • Jackson, T.A. (1978) The biogeochemistry of heavy metals in polluted lakes and streams at Flin Flon, Canada, and a proposed method for limiting heavy-metal pollution of natural waters, Environ. Geol. 2, 173–189.

    Article  CAS  Google Scholar 

  • Jackson, T.A. (1979) Relationships between the properties of heavy metals and their biogeochemical behaviour in lakes and river-lake systems, in Heavy Metals in the Environment (Proceedings International Conference on Management and Control of Heavy Metals in the Environment, September, 1979, London), CEP Consultants, Edinburgh, pp. 457–460.

    Google Scholar 

  • Jackson, T.A. (ed.) (1980) Mercury Pollution in the Wabigoon-English River System of Northwestern Ontario, and Possible Remedial Measures: a Progress Report, Government of Canada (Department of the Environment) and Government of Ontario (Ministry of the Environment).

    Google Scholar 

  • Jackson, T.A. (1984) Effects of inorganic cadmium, zinc, copper, and mercury on methyl mercury production in polluted lake sediments, in Environmental Impacts of Smelters, (ed J.O. Nriagu), John Wiley & Sons (Wiley-Interscience), New York, Toronto, Chichester, Brisbane, Singapore, pp. 551–578.

    Google Scholar 

  • Jackson, T.A. (1986) Methyl mercury levels in a polluted prairie river-lake system: seasonal and site-specific variations, and the dominant influence of trophic conditions, Can. J. Fish. Aquat. Sci. 43, 1873–1887.

    Article  CAS  Google Scholar 

  • Jackson, T.A. (1987) Methylation, demethylation, and bioaccumulation of mercury in lakes and reservoirs of northern Manitoba, with particular reference to effects of environmental changes caused by the Churchill-Nelson River diversion, in Technical Appendices to the Summary Report, Canada — Manitoba Agreement on the Study and Monitoring of Mercury in the Churchill River Diversion, Vol. 2, Chapter 8, Governments of Canada and Manitoba.

    Google Scholar 

  • Jackson, T.A. (1988a) Accumulation of mercury by plankton and benthic invertebrates in riverine lakes of northern Manitoba (Canada): importance of regionally and seasonally varying environmental factors, Can. J. Fish. Aquat. Sci. 45, 1744–1757.

    Article  CAS  Google Scholar 

  • Jackson, T.A. (1988b) The mercury problem in recently formed reservoirs of northern Manitoba (Canada): effects of impoundment and other factors on the production of methyl mercury by microorganisms in sediments, Can. J. Fish. Aquat. Sci. 45, 97–121.

    Article  CAS  Google Scholar 

  • Jackson, T.A. (1989) The influence of clay minerals, oxides, and humic matter on the methylation and demethylation of mercury by micro-organisms in freshwater sediments, Appl. Organometal. Chem. 3, 1–30.

    Article  CAS  Google Scholar 

  • Jackson, T.A. (1991a) Biological and environmental control of mercury accumulation by fish in lakes and reservoirs of northern Manitoba, Canada, Can. J. Fish. Aquat. Sci. 48, 2449–2470.

    Article  CAS  Google Scholar 

  • Jackson, T.A. (1991b) Effects of heavy metals and selenium on mercury methylation and other microbial activities in freshwater sediments, in Heavy Metals in the Environment, (ed. J.P. Vernet), Elsevier, Amsterdam, London, New York, Tokyo, pp. 191–217.

    Google Scholar 

  • Jackson, T.A. (1993a) Effects of environmental factors and primary production on the distribution and methylation of mercury in a chain of highly eutrophic riverine lakes, Water Polin Res. J. Can. 28, 177–216. (Also see : ‘Erratum’, Water Polin Res. J. Can. 28, after p. 512.)

    CAS  Google Scholar 

  • Jackson, T.A. (1993b) The influence of phytoplankton blooms and environmental variables on the methylation, demethylation, and bio-accumulation of mercury (Hg) in a chain of eutrophic mercury- polluted riverine lakes in Saskatchewan, Canada, in Heavy Metals in the Environment (eds R.J. Allan and J.O. Nriagu), Proceedings International Conference, Toronto, September 1993, Vol. 2, CEP Consultants Ltd, Edinburgh, pp. 301–304.

    Google Scholar 

  • Jackson, T.A. (1995) Effects of clay minerals, oxyhydroxides, and humic matter on microbial communities of soil, sediment, and water, in Environmental Impact of Soil Component Interactions, (eds P.M. Huang, J. Berthelin, J.M. Bollag et al.), Lewis Publishers (CRC Press), Boca Raton, London, Tokyo, pp. 165–200.

    Google Scholar 

  • Jackson, T.A. (1997) Long-range atmospheric transport of mercury to ecosystems, and the importance of anthropogenic emissions — a critical review and evaluation of the published evidence. Environ. Revs 5, 99–120.

    Article  CAS  Google Scholar 

  • Jackson, T.A. (1998) The biogeochemical and ecological significance of interactions between colloidal minerals and trace elements, in Environmental Interactions of Clay Minerals, (eds J.E. Rae and A. Parker), Springer-Verlag, Berlin, Heidelberg, London, Paris, Barcelona, New York, Tokyo, Hong Kong, (in press).

    Google Scholar 

  • Jackson, T. A. and Bistricki, T. (1995) Selective scavenging of copper, zinc, lead, and arsenic by iron and manganese oxyhydroxide coatings on plankton in lakes polluted with mine and smelter wastes: results of energy dispersive X-ray micro-analysis, J. Geochem. Explor. 52, 97–125.

    Article  CAS  Google Scholar 

  • Jackson, T.A. and Hecky, R.E. (1980) Depression of primary productivity by humic matter in lake and reservoir waters of the Boreal forest zone, Can. J. Fish. Aquat. Sci. 37, 2300–2317.

    Article  Google Scholar 

  • Jackson, T.A. and Woychuk, R.N. (1980a) Mercury speciation and distribution in a polluted river-lake system as related to the problem of lake restoration, in Restoration of Lakes and Inland Waters, Proceedings International Symposium on Inland Waters and Lake Restoration, 8–12 September 1980, Portland, Maine, EPA 440/5–81–010, US Environmental Protection Agency, Office of Water Regulations and Standards, Washington, pp. 93–101.

    Google Scholar 

  • Jackson, T.A. and Woychuk, R.N. (1980b) The geochemistry and distribution of mercury in the Wabigoon River system, in Mercury Pollution in the Wabigoon-English River System of Northwestern Ontario, and Possible Remedial Measures — a Progress Report, (ed. T.A. Jackson), Government of Canada (Department of the Environment) and Government of Ontario (Ministry of the Environment).

    Google Scholar 

  • Jackson, T.A. and Woychuk, R.N. (1981) Methyl mercury formation and distribution in a polluted river-lake system: the effect of environmental variables, and implications for biological uptake and lake restoration. Verh. Internat. Verein. Limnol. 21, 1114–1115 (abstract).

    Google Scholar 

  • Jackson, T.A., Kipphut, G., Hesslein, R.H. and Schindler, D.W. (1980) Experimental study of trace metal chemistry in soft-water lakes at different pH levels, Can. J. Fish. Aquat. Sci. 37, 387–402.

    Article  CAS  Google Scholar 

  • Jackson, T.A., Parks, J.W., Jones, P.D. et al. (1982) Dissolved and suspended mercury species in the Wabigoon River (Ontario, Canada): seasonal and regional variatons, Hydrobiol. 92, 473–487.

    Google Scholar 

  • Jackson, T.A., Klaverkamp, J.F. and Dutton, M.D. (1993) Heavy metal speciation and its biological consequences in a group of lakes polluted by a smelter, Flin Flon, Manitoba, Canada, Appl. Geochem. (Suppl.) 2, 285–289.

    Article  CAS  Google Scholar 

  • Jensen, S. and Jernelöv, A. (1969) Biological methylation of mercury in aquatic organisms, Nature 223, 753–754.

    Article  CAS  Google Scholar 

  • Jernelöv, Ã…. (1972) Factors in the transformation of mercury to methylmercury, in Environmental Mercury Contamination, (eds R. Härtung and B.D. Dinman), Ann Arbor Science Publishers, Ann Arbor, pp. 167–172.

    Google Scholar 

  • Jernelöv, A, Landner, L. and Larsson, T. (1975) Swedish perspectives on mercury pollution. J Water Polin Control Fed 47, 810–822.

    Article  Google Scholar 

  • Jernelöv, A. and Lann, H. (1971) Mercury accumulation in food chains. Oikos 22, 403–406.

    Article  Google Scholar 

  • Johnson, M.G., Culp, L.R. and George, S.E. (1986) Temporal and spatial trends in metal loadings to sediments of the Turkey Lakes, Ontario, Can. J. Fish. Aquat. Sci. 43, 754–762.

    Article  CAS  Google Scholar 

  • Jonasson, LR. and Boyle, R.W. (1972) Geochemistry of mercury and origins of natural contamination of the environment, Can. Mining Metallurg. (CIM) Bull. 65, 32–39.

    CAS  Google Scholar 

  • Kelly, CA., Rudd, J.W.M., St Louis, V.L. and Heyes, A. (1995) Is total mercury a good predictor of methyl mercury concentration in aquatic systems? Water Air Soil Polin 80, 715–724.

    Article  CAS  Google Scholar 

  • Kerndorff, H. and Schnitzer, M. (1980) Sorption of metals on humic acid. Geochim. Cosmochim. Acta 44, 1701–1708.

    Article  CAS  Google Scholar 

  • Kerry, A., Welbourn, P.M., Prucha, B. and Mierle, G. (1991) Mercury methylation by sulphate-reducing bacteria from sediments of an acid stressed lake, Water Air Soil Polin 56, 565–575.

    Article  CAS  Google Scholar 

  • Khalid, R.A., Gambrell, R.P. and Patrick, W.H. Jr (1977) Sorption and release of mercury by Mississippi River sediment as affected by pH and redox potential, in Biological Implications of Metals in the Environment, (eds H. Drucker and R.E. Wildung), Proceedings 15th Annual Hanford Life Sciences Symposium, Richland, Washington, 29 September-1 October, 1975), Technical Information Center, Energy Research & Development Administration, US Department of Commerce, Springfield, Virginia, pp. 297–314.

    Google Scholar 

  • Kidby, D.K. (1974) On the nature and significance of mercury inhibition of invertase from Saccharomyces cerevisiae. J. Gen. Microbiol. 84, 343–349.

    CAS  Google Scholar 

  • Kinniburgh, D.G. and Jackson, M.L. (1978) Adsorption of mercury(II) by iron hydrous oxide gel. Soil Sci. Soc. Amer. J. 42, 45–47.

    Article  CAS  Google Scholar 

  • Knauer, G.A. and Martin, J.H. (1972) Mercury in a marine pelagic food chain. Limnol. Oceanogr. 17, 868–876.

    Article  CAS  Google Scholar 

  • Koeman, J.H., Peeters, W.H.M., Koudstaal-Hol, C.H.M. et al (1973) Mercury-selenium correlations in marine mammals. Nature 245, 385–386.

    Article  CAS  Google Scholar 

  • Koeman, J.H., van de Ven, W.S.M., de Goeij, J.J.M, et al. (1975) Mercury and selenium in marine mammals and birds. Sei. Total Environ. 3, 279–287.

    Article  CAS  Google Scholar 

  • Kondratyev, K.Ya. (1969) Radiation in the Atmosphere, Academic Press, New York, London.

    Google Scholar 

  • Kooner, Z.S., Cox, CD. and Smoot, J.L. (1995) Prediction of adsorption of divalent heavy metals at the goethite/water interface by surface complexation modeling. Environ. Toxicol. Chem. 14, 2077–2083.

    Article  CAS  Google Scholar 

  • Korthals, E.T. and Winfrey, M.R. (1987) Seasonal and spatial variations in mercury methylation and demethylation in an oligotrophic lake. Appl. Environ. Microbiol. 53, 2397–2404.

    CAS  Google Scholar 

  • Landner, L. (1971) Biochemical model for the biological methylation of mercury suggested from methylation from methylation studies in vivo with Neurospora crassa. Nature 230, 452–454.

    Article  CAS  Google Scholar 

  • Langford, C.H. and Carey, J.H. (1987) Photocatalysis by inorganic components of natural water systems, in Photochemistry of Environmental Aquatic Systems, (eds W.J. Cooper and R.G. Zika), ACS Symposium Series no. 327, American Chemical Society.

    Google Scholar 

  • Langley, D.G. (1973) Mercury methylation in an aquatic environment, J. Water Polin Control Fed. 45, 44–51.

    CAS  Google Scholar 

  • Lathrop, R.C., Noonan, K.C., Guenther, P.M. et al. (1989) Mercury Levels in Walleye from Wisconsin Lakes of Different Water and Sediment Chemistry Characteristics, Tech. Bull. 163, Department of Natural Resources, Madison, Wisconsin.

    Google Scholar 

  • Lathrop, R.C., Rasmussen, P.W. and Knauer, D.R. (1991) Mercury concentrations in walleyes from Wisconsin (USA) lakes, Water Air Soil Polin 56, 295–307.

    Article  CAS  Google Scholar 

  • Leckie, J.O. and James, R.O. (1974) Control mechanisms for trace metals in natural waters, in Aqueous-environmental Chemistry of Metals, (ed. A.J. Rubin), Ann Arbor Science Publishers, Ann Arbor (Michigan), pp. 1–76.

    Google Scholar 

  • Lee, Y.-H. and Hultberg, H. (1990) Methylmercury in some Swedish surface waters. Environ. Toxicol. Chem. 9, 833–841.

    Article  CAS  Google Scholar 

  • Lee, Y.-H. and Iverfeldt, Ã…. (1991) Measurement of methylmercury and mercury in run-off, lake, and rain waters, Water Air Soil Polin 56, 309–321.

    Article  CAS  Google Scholar 

  • Lemly, A.D. and Smith, G.J. (1987) Aquatic Cycling of Selenium: Implications for Fish and Wildlife, Fish and Wildlife Service Leaflet 12, US Department of the Interior (Fish and Wildlife Service), Washington, DC.

    Google Scholar 

  • Lide, D.R. (ed.) (1992) CRC Handbook of Physics and Chemistry, 73rd edn, CRC Press, Boca Raton, Ann Arbor, London, Tokyo.

    Google Scholar 

  • Liebert, C.A., Barkay, T. and Turner, R.R. (1991) Acclimation of aquatic microbial communities to Hg(II) and CH3Hg+ in polluted freshwater ponds. Microb. Ecol. 21, 139–149.

    Article  CAS  Google Scholar 

  • Lindberg, S.E. (1987) Emission and deposition of atmospheric mercury vapor, in Lead, Mercury, Cadmium and Arsenic in the Environment, (eds T.C. Hutchinson and K.M. Meema), John Wiley & Sons, Chichester, New York, Toronto, Brisbane, Singapore, pp. 89–106.

    Google Scholar 

  • Lindberg, S.E. and Harriss, R.C. (1974) Mercury-organic matter associations in estu-arine sediments and interstitial water. Environ. Sci. Technol. 8, 459–462.

    Article  CAS  Google Scholar 

  • Lindqvist, O., Johansson, K., Aastrup, M. et al. (1991) Mercury in the Swedish environment — recent research on causes, consequences and corrective methods, Water Air Soil Polin 55, 1–261.

    Google Scholar 

  • Lockhart, W.L., Wilkinson, P., Billeek, B.N. et al. (1993) Poly cyclic aromatic hydrocarbons and mercury in sediments from two isolated lakes in central and northern Canada. Water Sci. Technol. 28, 43–52.

    CAS  Google Scholar 

  • Lockwood, R.A. and Chen, K.Y. (1973) Adsorption of Hg(II) by hydrous manganese oxides. Environ. Sci. Technol. 7, 1028–1034.

    Article  CAS  Google Scholar 

  • Louchouarn, P., Lucotte, M., Mucci, A. and Pichet, P. (1993) Geochemistry of mercury in two hydroelectric reservoirs in Quebec, Canada. Can. J. Fish. Aquat. Sci. 50, 269–281.

    Article  CAS  Google Scholar 

  • MacNaughton, M.G. and James, R.O. (1974) Adsorption of aqueous mercury(II) complexes at the oxide/water interface. J. Colloid Interface Sci. 47, 431–440.

    Article  CAS  Google Scholar 

  • Magos, L. (1991) Overview on the protection given by selenium against mercurials, in Advances in Mercury Toxicology, (eds T. Suzuki, N. Imura and T.W. Clarkson), Plenum Press, New York and London, pp. 289–298.

    Google Scholar 

  • Major, M.A., Rosenblatt, and Bostian, K.A. (1991) The octanol/water partition coefficient of methylmercuric chloride and methylmercuric hydroxide in pure water and salt solutions. Environ. Toxicol. Chem. 10, 5–8.

    Article  CAS  Google Scholar 

  • Martin, M.H. and Coughtrey, P.J. (1982) Biological Monitoring of Heavy Metal Pollution, Applied Science Publishers, London, New York.

    Book  Google Scholar 

  • Mason, J.W., Anderson, A.C. and Shariat, M. (1979) Rate of demethylation of methylmercuric chloride by Enterobacter aerogenes and Serratia marcescens. Bull. Environ. Contam. Toxicol. 21, 262–268.

    Article  CAS  Google Scholar 

  • Mason, R.P. and Fitzgerald, W.F. (1991) Mercury speciation in open ocean waters. Water Air Soil Polin 56, 779–789.

    Article  CAS  Google Scholar 

  • Mason, R.P. and Fitzgerald, W.F. (1993) The distribution and biogeochemical cycling of mercury in the equatorial Pacific Ocean. Deep-Sea Res. J. 40, 1897–1924.

    Article  CAS  Google Scholar 

  • Mason, R.P., Morel, F.M.M. and Hemond, H.F. (1995a) The role of microorganisms in elemental mercury formation in natural waters. Water Air Soil Polin 80, 775–787.

    Article  CAS  Google Scholar 

  • Mason, R.P., Reinfelder, J.R. and Morel, F.M.M. (1995b) Bioaccumulation of mercury and methylmercury. Water Air Soil Polin 80, 915–921.

    Article  CAS  Google Scholar 

  • Matheson, D.H. (1979) Mercury in the atmosphere and in precipitation, in The Bio geochemistry of Mercury in the Environment, (ed. J.O. Nriagu), Elsevier/North Holland Biomedical Press, Amsterdam, Oxford, New York, pp. 113–129.

    Google Scholar 

  • Matilainen, T. (1995) Involvement of bacteria in methylmercury formation in anaerobic lake waters. Water Air Soil Polin 80, 757–764.

    Article  CAS  Google Scholar 

  • Matilainen, T. and Verta, M. (1995) Mercury methylation and demethylation in aerobic surface waters. Can. J. Fish. Aquat. Sci. 52, 1597–1608.

    Article  CAS  Google Scholar 

  • Matilainen, T., Verta, M., Niemi, M. and Uusi-Rauva, A. (1991) Specific rates of net methylmercury production in lake sediments, Water Air Soil Polin 56, 595–605.

    Article  CAS  Google Scholar 

  • May, K., Stoeppler, M. and Reisinger, K. (1987) Studies in the ratio total mer-cury/methylmercury in the aquatic food chain. Toxicol. Environ. Chem. 13, 153–159.

    Article  CAS  Google Scholar 

  • McBride, B.C. and Edwards, T.L. (1977) Role of the methanogenic bacteria in the alkylation of arsenic and mercury, in Biological Implications of Metals in the Environment, (eds H. Drucker and R.E. Wildung), Proceedings 15th Annual Hanford Life Sciences Symposium, Richland, Washington, 29th September-1st October 1975, Technical Information Center, Energy Research and Development Administration, US Department of Commerce, Springfield, Virginia, pp. 1–19.

    Google Scholar 

  • McMurty, M.J., Wales, D.L., Scheider, W.A. et al. (1989) Relationship of mercury concentrations in lake trout (Salvelinus namaycush) and smallmouth bass (Micropterus dolomieui) to the physical and chemical characteristics of Ontario lakes. Can. J. Fish. Aquat. Sci. 46, 426–434.

    Article  Google Scholar 

  • Meili, M. (1991) The coupling of mercury and organic matter in the biogeochemical cycle — towards a mechanistic model for the Boreal forest zone, Water Air Soil Polin 56, 333–347.

    Article  CAS  Google Scholar 

  • Meili, M., Iverfeldt, Ã…. and HÃ¥kanson, L. (1991) Mercury in the surface water of Swedish forest lakes — concentrations, speciation and controlling factors. Water Air Soil Polin 56, 439–453.

    Article  CAS  Google Scholar 

  • Messier, D. and Roy, D. (1987) Concentrations en mercure chez les poissons au complexe hydroélectrique de La Grande Rivière (Québec). Naturaliste Can. (Rev. Écol. Syst.) 114, 357–368.

    CAS  Google Scholar 

  • Meyer, M.W., Evers, D.C., Daulton, T. and Braselton, W.E. (1995) Common loons (Gavia immer) nesting on low pH lakes in northern Wisconsion have elevated blood mercury content. Water Air Soil Polin 80, 871–880.

    Article  CAS  Google Scholar 

  • Miettinen, J.K. (1975) The accumulation and excretion of heavy metals in organisms, in Heavy Metals in the Aquatic Environment, (ed. P.A. Krenkel), Pergamon Press, Oxford, New York, Toronto, Sydney, Braunschweig, pp. 155–166.

    Google Scholar 

  • Miskimmin, B.M., Rudd, J.W.M. and Kelly, C.A. (1992) Influence of dissolved organic carbon, pH, and microbial respiration rates on mercury methylation and demethylation in lake water, Can. J. Fish. Aquat. Sci. 49, 17–22.

    Article  CAS  Google Scholar 

  • Morris, C. (1992) Academic Press Dictionary of Science and Technology, Academic Press, San Diego, New York, Boston, London, Toronto, Sydney, Tokyo.

    Google Scholar 

  • Morrison, K.A. and Thérien, N. (1995) Changes in mercury levels in lake whitefish (Coregonus clupeaformis) and northern pike (Esox lucius) in the LG-2 reservoir since flooding. Water Air Soil Polin 80, 819–828.

    Article  CAS  Google Scholar 

  • Mortimer, D.C. and Kudo, A. (1975) Interaction between aquatic plants and bed sediments in mercury uptake from flowing water. J. Environ. Qual. 4, 491–495.

    Article  CAS  Google Scholar 

  • Mucci, A., Lucotte, M., Montgomery, S. et al. (1995) Mercury remobilization from flooded soils in a hydroelectric reservoir of northern Quebec, La Grande-2: results of a soil resuspension experiment. Can. J. Fish. Aquat. Sci. 52, 2507–2517.

    Article  CAS  Google Scholar 

  • Munthe, J., Xiao, Z.F. and Lindqvist, O. (1991) The aqueous reduction of divalent mercury by sulfite. Water Air Soil Polin 56, 621–630.

    Article  CAS  Google Scholar 

  • Nagase, H., Ose, Y., Sato, T. and Ishikawa, T. (1982) Methylation of mercury by humic substances in an aquatic environment. Sci. Total Environ. 25, 133–142.

    Article  CAS  Google Scholar 

  • Nakamura, K., Sakamoto, M., Uchiyama, H. and Yagi, O. (1990) Organomercurial-volatilizing bacteria in the mercury-polluted sediment of Minamata Bay, Japan. Appl. Environ. Microbiol. 56, 304–305.

    CAS  Google Scholar 

  • Newton, D.W., Ellis, R. Jr and Paulsen, G.M. (1976) Effect of pH and complex formation on mercury(II) adsorption by bentonite. J. Environ. Qual. 5, 251–254.

    Article  CAS  Google Scholar 

  • Nicoletto, P.F. and Hendricks, A.C. (1988) Sexual differences in accumulation of mercury in four species of centrarchid fishes., Can. J. Zool. 66, 944–949.

    Article  CAS  Google Scholar 

  • Norstrom, R.J., McKinnon, A.E. and deFreitas, A.S.W. (1976) A bioenergetics-based model for pollutant accumulation by fish. Simulation of PCB and methylmercury residue levels in Ottawa River yellow perch (Perca flavescens). J. Fish. Res. Board Can. 33, 248–267.

    Article  CAS  Google Scholar 

  • Nriagu, J.O. (1989) A global assessment of natural sources of atmospheric trace metals, Nature 338, 47–49.

    Article  CAS  Google Scholar 

  • Nriagu, J.O. (1992) Worldwide contamination of the atmosphere with toxic metals, in The Deposition and Fate of Trace Metals in Our Environment, (eds E.S. Verry and S.J. Vermette), Forest Service (US Department of Agriculture), North Central Forest Experiment Station, pp. 9–21.

    Google Scholar 

  • Nriagu, J.O. and Pacyna, J.M. (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333, 134–139.

    Article  CAS  Google Scholar 

  • Nuzzi, R. (1972) Toxicity of mercury to phytoplankton. Nature 237, 38–40.

    Article  CAS  Google Scholar 

  • Ochiai, E.-I. (1977) Bioinorganic Chemistry, Allyn and Bacon, Boston, Toronto, London, Sydney.

    Google Scholar 

  • Odin, M., Feurtet-Mazel, A., Ribeyre, F. and Boudou, A. (1994) Actions and interactions of temperature, pH and photoperiod on mercury bioaccumulation by nymphs of the burrowing mayfly Hexagenia rigida, from the sediment contamination source. Environ. Toxicol. Chem. 13, 1291 – 1302.

    CAS  Google Scholar 

  • Olson, B.H. and Cooper, R.C. (1976) Comparison of aerobic and anaerobic methylation of mercuric chloride by San Francisco Bay sediments Water Res. 10, 113–116.

    Article  CAS  Google Scholar 

  • Oremland, R.S., Culbertson, C.W. and Winfrey, M.R. (1991) Methylmercury decomposition in sediments and bacterial cultures: involvement of methanogens and sulfate reducers in oxidative demethylation Appl. Environ. Microbiol. 57, 130–137.

    CAS  Google Scholar 

  • Ouellet, M. and Jones, H.G. (1983) Historical changes in acid precipitation and heavy metal deposition originating from fossil fuel combustion in eastern North America as revealed by lake sediment geochemistry. Water Sci. Technol. 15, 115–130.

    CAS  Google Scholar 

  • Pacyna, J.M. and Keeler, G.J. (1995) Sources of mercury in the Arctic. Water Air Soil Polin 80, 621–632.

    Article  CAS  Google Scholar 

  • Pahan, K., Ghosh, D.K., Ray, S. et al. (1994) Mercury and organomercurial degrading enzymes in a broad-spectrum Hg-resistant strain of Bacillus pasteurii. Bull. Environ. Contam. Toxicol. 52, 582–589.

    CAS  Google Scholar 

  • Painter, S., Cameron, E.M., Allan, R. and Rouse, J. (1994) Reconnaissance geochemistry and its environmental relevance. J. Geochem. Explor. 51, 213–246.

    Article  CAS  Google Scholar 

  • Palheta, D. and Taylor, A. (1995) Mercury in environmental and biological samples from a gold mining area in the Amazon region of Brazil. Sei. Total Environ. 168, 63–69.

    Article  CAS  Google Scholar 

  • Pan-Hou and Imura, N. (1982) Physiological role of mercury-methylation in Clostridium cochlearium T-2C. Bull. Environ. Contam. Toxicol. 29, 290–297.

    Article  CAS  Google Scholar 

  • Parks, J.W. (1976) Mercury in Sediment and Water in the Wabigoon-English River System, 1970–1975, Ministry of the Environment, Ontario, Canada.

    Google Scholar 

  • Parks, J.W. and Hamilton, A.L. (1987) Accelerating recovery of the mercury-contaminated Wabigoon/English River system, Hydrobiology 149, 159–188.

    Article  CAS  Google Scholar 

  • Parks, J.W., Sutton, J.A. and Lutz, A. (1986) Effect of point and diffuse source loadings on mercury concentrations in the Wabigoon River: evidence of a seasonally varying sediment-water partition. Can. J. Fish. Aquat. Sci. 43, 1426–1444.

    Article  CAS  Google Scholar 

  • Parks, J.W., Lutz, A. and Sutton, J.A. (1989) Water column methylmercury in the Wabigoon/English river-lake system: factors controlling concentrations, specia-tion, and net production. Can. J. Fish. Aquat. Sci. 46, 2184–2202.

    Article  CAS  Google Scholar 

  • Parks, J.W., Craig, P.J., Neary, B.P. et al. (1991a) Biomonitoring in the mercury-contaminated Wabigoon-English-Winnipeg River (Canada) system: selecting the best available bioindicator. Appl. Organometal. Chem. 5, 487–495.

    Article  CAS  Google Scholar 

  • Parks, J.W., Curry, C, Romani, D. and Russell, D.D. (1991b) Young northern pike, yellow perch and crayfish as bioindicators in a mercury contaminated watercourse. Environ. Monit. Assess. 16, 39–73.

    Article  CAS  Google Scholar 

  • Paulsson, K. and Lundbergh, K. (1991) Treatment of mercury contaminated fish by selenium addition. Water Air Soil Polin 56, 833–841.

    Article  CAS  Google Scholar 

  • Phillips, C.S.G. and Williams, R.J.P. (1965) Inorganic Chemistry, Vol. I, Oxford University Press, Oxford, New York.

    Google Scholar 

  • Phillips, G.F., Dixon, B.E. and Lidzey, R.G. (1959) The volatility of organo-mercury compounds. J. Sci. FoodAgric. 10, 604–610.

    Article  CAS  Google Scholar 

  • Ponce, R.A. and Bloom, N.S. (1991) Effect of pH on the bioaccumulation of low level, dissolved methylmercury by rainbow trout (Oncorhyncus my kiss). Water Air Soil Polin 56, 631–640.

    Article  CAS  Google Scholar 

  • Porcella, D.B., Huckabee, J.W. and Wheatley, B. (eds) (1995) Mercury as a Global Pollutant, Kluwer Academic Publishers, Dordrecht, London, Boston.

    Google Scholar 

  • Rabenstein, D.L. and Reid, R.S. (1984) Nuclear magnetic resonance studies of the solution chemistry of metal complexes. 20. Ligand-exchange kinetics of methylmercury(II)-thiol complexes. Inorg. Chem. 23, 1246–1250.

    Article  CAS  Google Scholar 

  • Radosevich, M. and Klein, D.A. (1993) Bacterial enumeration and mercury volatilization in deep subsurface sediment samples. Bull. Environ. Contam. Toxicol. 51, 226–233.

    Article  CAS  Google Scholar 

  • Ramamoorthy, S. and Kushner, D.J. (1975a) Binding of mercuric and other heavy metal ions by microbial growth media. Microbiol. Ecology 2, 162–176.

    Article  CAS  Google Scholar 

  • Ramamoorthy, S. and Kushner, D.J. (1975b) Heavy metal binding components of river water. J. Fish. Res. Board Can. 32, 1755–1766.

    Article  CAS  Google Scholar 

  • Ramamoorthy, S. and Rust, B.R. (1976) Mercury sorption and desorption characteristics of some Ottawa River sediments. Can. J. Earth Sci. 13, 530–536.

    Article  CAS  Google Scholar 

  • Ramamoorthy, S. and Rust, B.R. (1978) Heavy metal exchange processes in sediment-water systems. Environ. Geol. 2, 165–172.

    Article  CAS  Google Scholar 

  • Ramlal, P.S., Rudd, J.W.M., Furutani, A. and Xun, L. (1985) The effect of pH on methyl mercury production and decomposition in lake sediments. Can. J. Fish. Aquat. Sci. 42, 685–692.

    Article  CAS  Google Scholar 

  • Rändle, K. and Hartmann, E.H. (1987) Applications of the continuous flow stirred cell (CFSC) technique to adsorption of zinc, cadmium and mercury on humic acids. Geoderma 40, 281–296.

    Article  Google Scholar 

  • Rask, M. and Metsälä, T.-R. (1991) Mercury concentrations in northern pike, Esox lucius L., in small lakes of Evo area, southern Finland. Water Air Soil Polin 56, 369–378.

    Article  CAS  Google Scholar 

  • Rasmussen, P.E. (1994) Current methods of estimating atmospheric mercury fluxes in remote areas. Environ. Sci. Technol. 28, 2233–2241.

    Article  CAS  Google Scholar 

  • Regnell, O. (1994) The effect of pH and dissolved oxygen levels on methylation and partitioning of mercury in freshwater model systems. Environ. Polin 84, 7–13.

    Article  CAS  Google Scholar 

  • Regnell, O. (1995) Methyl mercury in lakes: factors affecting its production and partitioning between water and sediment. PhD dissertation, Lund University (Department of Ecology — Chemical Ecology and Ecotoxicology), Sweden.

    Google Scholar 

  • Regnell, O. and Tunlid, A. (1991) Laboratory study of chemical speciation of mercury in lake sediment and water under aerobic and anaerobic conditions. Appl. Environ. Microbiol. 57, 789–795.

    CAS  Google Scholar 

  • Reimers, R.S. and Krenkel, P.A. (1974) Kinetics of mercury adsorption and desorption in sediments. Water Polin Control Fed. 46, 352–365.

    CAS  Google Scholar 

  • Reimers, R.S., Krenkel, P.A., Eagle, M. and Tragitt, G. (1975) Sorption phenomenon in the organics of bottom sediments, in Heavy Metals in the Aquatic Environment, (ed. P.A. Krenkel), Pergamon Press, Oxford, New York, Toronto, Sydney, Braunschweig, pp. 117–129.

    Google Scholar 

  • Reinert, R.E., Stone, L.J. and Willford, W.A. (1974) Effect of temperature on accumulation of methylmercuric chloride and P,P’ DDT by rainbow trout (Salmo gairdneri). J. Fish. Res. Board Can. 31, 1649–1652.

    Article  CAS  Google Scholar 

  • Ribeyre, F. and Boudou, A. (1982) Study of the dynamics of the accumulation of two mercury compounds — HgCl2 and CH3HgCl — by Chlorella vulgaris: effect of temperature and pH factor of the environment. Int. J. Environ. Studies 20, 35–40.

    Article  CAS  Google Scholar 

  • Ribo, J.M., Yang, J.E. and Huang, P.M. (1989) Luminescent bacteria toxicity assay in the study of mercury speciation. Hydrobiology 188/189, 155–162.

    Article  Google Scholar 

  • Rich, D. (1965) Periodic Correlations, W.A. Benjamin, New York, Amsterdam.

    Google Scholar 

  • Richman, L.A., Wren, CD. and Stokes, P.M. (1988) Facts and fallacies concerning mercury uptake by fish in acid stressed lakes. Water Air Soil Polin 37, 465–473.

    Article  CAS  Google Scholar 

  • Rimerman, R.A., Buhler, D.R. and Whanger, P.D. (1977) Metabolic interactions of selenium with heavy metals, in Biochemical Effects of Environmental Pollutants, (ed. S.D. Lee), Ann Arbor Science Publishers, Ann Arbor, pp. 377–396.

    Google Scholar 

  • Roberts, J.D. and Caserio, M.C. (1965) Basic Principles of Organic Chemistry, W.A. Benjamin, New York, Amsterdam.

    Google Scholar 

  • Röderer, G. (1983) Differential toxic effects of mercuric chloride and methylmercuric chloride on the freshwater alga Poterioochromonas malhamensis. Aquat. Toxicol. 3, 23–34.

    Article  Google Scholar 

  • Rodgers, D.W. (1994) You are what you eat and a little bit more: bioenergetics-based models of methylmercury accumulation in fish revisited, in Mercury Pollution, (eds C.J. Watras and J.W. Huckabee), Lewis Publishers, Boca Raton, Ann Arbor, London, Tokyo, pp. 427–439.

    Google Scholar 

  • Rodgers, D.W., Dickman, M. and Han, X. (1995) Stories from old reservoirs: sediment Hg and Hg methylation in Ontario hydroelectric developments. Water Air Soil Polin 80, 829–839.

    Article  CAS  Google Scholar 

  • Rogers, R.D. (1977) Abiological Methylation of Mercury in Soil, Report no. EPA-600/3–77–007, Environmental Monitoring and Support Laboratory, Office of Research and Development, US Environmental Protection Agency, Las Vegas, Nevada.

    Google Scholar 

  • Rognerud, S. and Fjeld, E. (1993) Regional survey of heavy metals in lake sediments in Norway. Ambio 22, 206–212.

    Google Scholar 

  • Rowland, I.R., Davies, M.J. and Grasso, P. (1977) Volatilisation of methylmercuric chloride by hydrogen sulphide. Nature 265, 718–719.

    Article  CAS  Google Scholar 

  • Rudd, J.W.M. (1995) Sources of methyl mercury to freshwater ecosystems: a review. Water Air Soil Polin 80, 697–713.

    Article  CAS  Google Scholar 

  • Rudd, J.W.M. and Turner, M.A. (1983) The English-Wabigoon River system: V. Mercury and selenium bioaccumulation as a function of aquatic primary productivity. Can. J. Fish. Aquat. Sci. 40, 2251–2259.

    Article  CAS  Google Scholar 

  • Rudd, J.W.M., Turner, M.A., Townsend, B.E. et al. (1980) Dynamics of selenium in mercury-contaminated experimental freshwater ecosystems. Can. J. Fish. Aquat. Sci. 37, 848–857.

    Article  CAS  Google Scholar 

  • Ruohtula, M. and Miettinen, J.K. (1975) Retention and excretion of 203Hg-labelled methylmercury in rainbow trout. Oikos 26, 385–390.

    Article  CAS  Google Scholar 

  • Scheider, W.A., Jeffries, D.S. and Dillon, P.J. (1979) Effects of acidic precipitation on Precambrian freshwaters in southern Ontario. J. Great Lakes Res. 5, 45–51.

    Article  CAS  Google Scholar 

  • Schindler, D.W. (1988) Effects of acid rain on freshwater ecosystems. Science 239, 149–157.

    Article  CAS  Google Scholar 

  • Schindler, P.W. and Stumm, W. (1987) The surface chemistry of oxides, hydroxides, and oxide minerals, in Aquatic Surface Chemistry, (ed. W. Stumm.), John Wiley & Sons, New York, Toronto, Chichester, Brisbane, Singapore, pp. 83–110.

    Google Scholar 

  • Schnitzer, M. and Khan, S.U. (1972) Humic Substances in the Environment, Marcel Dekker, New York.

    Google Scholar 

  • Schottel, J., Mandai, A. and Toth, K. (1974) Mercury and mercurial resistance determined by plasmids in Escherichia coli and Pseudomonas aeruginosa, in Proc. Int. Conf. on Transport of Persistent Chemicals in Aquatic Ecosystems (Ottawa, Canada, 1–3 May, 1974), Sect. II, pp. 65–71.

    Google Scholar 

  • Schroeder, W.H., Yarwood, G. and Niki, H. (1991) Transformation processes involving mercury species in the atmosphere — results from a literature survey. Water Air Soil Polin 56, 653–666.

    Article  CAS  Google Scholar 

  • Schuster, E. (1991) The behavior of mercury in the soil with special emphasis on complexation and adsorption processes — a review of the literature, Water, Air, Soil Pollut., 56, 667–680.

    Article  CAS  Google Scholar 

  • Scott, D.P. (1974) Mercury concentration of white muscle in relation to age, growth, and condition in four species of fishes from Clay Lake, Ontario. J. Fish. Res. Board Can. 31, 1723–1729.

    Article  CAS  Google Scholar 

  • Scott, D.P. and Armstrong, F.A.J. (1972) Mercury concentration in relation to size in several species of freshwater fishes from Manitoba and Northwestern Ontario. J. Fish. Res. Board Can. 29, 1685–1690.

    Article  CAS  Google Scholar 

  • Scruton, D.A., Petticrew, E.L., LeDrew, L.J. et al. (1994) Methylmercury levels in fish tissue from three reservoir systems in insular Newfoundland, Canada, in Mercury Pollution, (eds C.J. Watras and J.W. Huckabee), Lewis Publisheers, Boca Raton, Ann Arbor, London, Tokyo, pp. 441–455.

    Google Scholar 

  • Sellers, P., Kelly, CA., Rudd, J.W.M. and MacHutchon, A.R. (1996) Photodegradation of methylmercury in lakes. Nature 380, 694–697.

    Article  CAS  Google Scholar 

  • Semu, E., Singh, B.R. and Selmer-Olsen, A.R. (1987) Adsorption of mercury compounds by tropical soils. II. Effect of soil:solution ratio, ionic strength, pH, and organic matter. Water Air Soil Polin 32, 1–10.

    CAS  Google Scholar 

  • Shariat, M., Anderson, A.C. and Mason, J.W. (1979) Screening of common bacteria capable of demethylation of methylmercuric chloride. Bull. Environ. Contam. Toxicol 21,255–261.

    Article  CAS  Google Scholar 

  • Shin, E.-B. and Krenkel, P.A. (1976) Mercury uptake by fish and biomethylation mechanisms. J. Water Polin Control Fed. 48, 473–501.

    CAS  Google Scholar 

  • Siegel, B.Z. and Siegel, S.M. (1979) Biological indicators of atmospheric mercury, in The Bio geochemistry of Mercury in the Environment, (ed. J.O. Nriagu), Elsevier/North Holland Biomedical Press, Amsterdam, Oxford, New York, pp. 131–159.

    Google Scholar 

  • Sillén, L.G. and Martell, A.E. (1964) Stability Constants of Metal-ion Complexes, Special Publication no. 17, The Chemical Society, London.

    Google Scholar 

  • Sillén, L.G. and Martell, A.E. (1971) Stability Constants of Metal-ion Complexes, Supplement no. 1, Special Publication no. 25, The Chemical Society, London.

    Google Scholar 

  • Simonin, H.A., Gloss, S.P., Driscoll, C.T. et al. (1994) Mercury in yellow perch from Adirondack drainage lakes (New York, US), in Mercury Pollution, (eds C.J. Watras and J.W. Huckabee), Lewis Publishers, Boca Raton, Ann Arbor, London, Tokyo, pp. 457–469.

    Google Scholar 

  • Sinicrope, T.L., Langis, R., Gersberg, R.M. et al. (1992) Metal removal by wetland mesocosms subjected to different hydroperiods. Ecol Eng. 1, 309–322.

    Article  Google Scholar 

  • Sisler, H. (1963) Electronic Structure, Properties, and the Periodic Law, Reinhold, New York; Chapman & Hall, London.

    Google Scholar 

  • Slotton, D.G., Reuter, J.E. and Goldman, C.R. (1995) Mercury uptake patterns of biota in a seasonally anoxic northern California reservoir. Water Air Soil Polin 80, 841–850.

    Article  CAS  Google Scholar 

  • Southworth, G.R., Turner, R.R., Peterson, M.J. and Bogle, M.A. (1995) Form of mercury in stream fish exposed to high concentrations of dissolved inorganic mercury. Chemosphere 30, 719–181.

    Article  Google Scholar 

  • Spangler, W.J., Spigarelli, J.L., Rose, J.M. and Miller, H.M. (1973) Methylmercury: bacterial degradation in lake sediments. Science 180, 192–193.

    Article  CAS  Google Scholar 

  • St Louis, V.L., Rudd, J.W.M., Kelly, C.A. et al. (1994) Importance of wetlands as sources of methyl mercury to Boreal forest ecosystems. Can. J. Fish. Aquat. Sci. 51, 1065–1076.

    Article  Google Scholar 

  • Steffan, R.J., Korthals, E.T. and Winfrey, M.R. (1988) Effects of acidification on mercury methylation, demethylation, and volatilization in sediments from an acid-susceptible lake. AppL Environ. Microbiol. 54, 2003–2009.

    CAS  Google Scholar 

  • Steinnes, E. (1994) Is mercury affected by the ‘global fractionation’ process? In Abstract Book of International Conference on Mercury as a Global Pollutant (Whistler, British Columbia, July, 1994) (abstract).

    Google Scholar 

  • Steinnes, E. and Andersson, E.M. (1991) Atmospheric deposition of mercury in Norway: temporal and spatial trends. Water Air Soil Polin 56, 391–404.

    Article  CAS  Google Scholar 

  • Stordal, M.C, Gill, G.A., Wen, L.-S. and Santschi, P.H. (1996) Mercury phase spe-ciation in the surface waters of three Texas estuaries: importance of colloidal forms. Limnol. Oceanogr. 41, 52–61.

    Article  CAS  Google Scholar 

  • Stumm, W., Hohl, H. and Dalang, F. (1976) Interaction of metal ions with hydrous oxide surfaces. Croatica Chemica Acta 48, 491–504.

    CAS  Google Scholar 

  • Summers, A.O. (1988) Biotransformations of mercury compounds, in Environmental Biotechnology, (ed. G.S. Omenn), Plenum Press, New York, London, pp. 105–109.

    Google Scholar 

  • Takizawa, Y. (1979) Epidemiology of mercury poisoning, in The Bio geochemistry of Mercury in the Environment, (ed. J.O. Nriagu), Elsevier/North-Holland Biomedical Press, Amsterdam, Oxford, New York, pp. 325–365.

    Google Scholar 

  • Timperley, M.H. and Allan, R.J. (1974) The formation and detection of metal dispersion halos in organic lake sediments. J. Geochem. Explor. 3, 167–190.

    Article  CAS  Google Scholar 

  • Tipping, E. and Hurley, M.A. (1992) A unifying model of cation binding by humic substances. Geochim. Cosmochim. Acta 56, 3627–3641.

    Article  CAS  Google Scholar 

  • Topping, G. and Davies, I.M. (1981) Methylmercury production in the marine water column. Nature 290, 243–244.

    Article  CAS  Google Scholar 

  • Trost, P.B. and Bisque, R.E. (1972) Distribution of mercury in residual soils, in Environmental Mercury Contamination, (eds R. Hartung and B.D. Dinman), Ann Arbor Science Publishers, Ann Arbor, pp. 178–196.

    Google Scholar 

  • Turner, M.A. and Rudd, J.W.M. (1983) The English-Wabigoon River system: III. Selenium in lake enclosures: its geochemistry, bioaccumulation, and ability to reduce mercury bioaccumulation. Can. J. Fish. Aquat. Sci. 40, 2228–2240.

    Article  CAS  Google Scholar 

  • Turner, M.A. and Swick, A.L. (1983) The English-Wabigoon River system: IV. Interaction between mercury and selenium accumulated from waterborne and dietary sources by northern pike (Esox lucius). Can. J. Fish. Aquat. Sci. 40, 2241–2250.

    Article  CAS  Google Scholar 

  • Verdon, R., Brouard, D., Demers, C. et al. (1991) Mercury evolution (1978–1988) in fishes of the La Grande hydroelectric complex, Québec, Canada. Water Air Soil Polin 56, 405–417.

    Article  CAS  Google Scholar 

  • Vonk, J.W. and Sijpesteijn, A.K. (1973) Studies on the methylation of mercuric chloride by pure cultures of bacteria and fungi. Antonie van Leeuwenhoek 39, 505–513.

    Article  CAS  Google Scholar 

  • Wagemann, R., Lockhart, W.L., Welch, H. and Innés, S. (1995) Arctic marine mammals as integrators and indicators of mercury in the Arctic. Water Air Soil Polin 80, 683–693.

    Article  CAS  Google Scholar 

  • Walczak, B.Z., Hammer, U.T. and Huang, P.M. (1986) Ecophysiology and mercury accumulation of rainbow trout (Salmo gairdneri) when exposed to mercury in various concentrations of chloride. Can. J. Fish. Aquat. Sci. 43, 710–714.

    Article  CAS  Google Scholar 

  • Wang, J.S., Huang, P.M., Hammer, U.T. and Liaw, W.K. (1985) Influence of selected cation and anion species on the adsorption of mercury(II) by montmorillonite. Appl. Clay Sci. 1, 125–132.

    Article  CAS  Google Scholar 

  • Wang, J.S., Huang, P.M., Hammer, U.T. and Liaw, W.K. (1988) Influence of chloride/mercury molar ratio and pH on the adsorption of mercury by poorly crystalline oxides of Al, Fe, Mn, and Si. Verh. Internat. Verein. Limnol. 23, 1594–1600.

    CAS  Google Scholar 

  • Wang, J.S., Huang, P.M., Hammer, U.T. and Liaw, W.K. (1989) Role of dissolved oxygen in the desorption of mercury from freshwater sediment, in Aquatic Toxicology and Water Quality Management, (ed. J.O. Nriagu.), John Wiley & Sons, New York, Toronto, Chichester, Brisbane, Singapore, pp. 153–159.

    Google Scholar 

  • Wang, J.S., Huang, P.M., Liaw, W.K. and Hammer, U.T. (1991) Kinetics of the desorption of mercury from selected freshwater sediments as influenced by chloride. Water Air Soil Polin 56, 533–542.

    Article  CAS  Google Scholar 

  • Waslenchuk, D.G. (1975) Mercury in fluvial bed sediments subsequent to contamination. Environ. Geol. 1, 131–136.

    Article  CAS  Google Scholar 

  • Watras, C.J. and Bloom, N.S. (1992) Mercury and methylmercury in individual zoo-plankton: implications for bioaccumulation. Limnol. Oceanogr. 37, 1313–1318.

    Article  Google Scholar 

  • Watras, C.J., Bloom, N.S., Hudson, R.J.M. et al. (1994) Sources and fates of mercury and methylmercury in Wisconsin lakes, in Mercury Pollution, (eds C.J Watras and J.W. Huckabee), Lewis Publishers, Boca Raton, Ann Arbor, London, Tokyo, pp. 153–177.

    Google Scholar 

  • Watras, C.J., Bloom, N.S., Claas, S.A. et al. (1995) Methylmercury production in the anoxic hypolimnion of a dimictic seepage lake. Water Air Soil Polin 80, 735–745.

    Article  CAS  Google Scholar 

  • Watras, C.J., Morrison, K.A. and Bloom, N.S. (1995) Chemical correlates of Hg and methyl-Hg in northern Wisconsin lake waters under ice-cover. Water Air Soil Polin 84, 253–267.

    Article  CAS  Google Scholar 

  • Weber, J.H. (1993) Review of possible paths for abiotic methylation of mercury(II) in the aquatic environment. Chemosphere 26, 2063–2077.

    Article  CAS  Google Scholar 

  • Weber, J.H., Reisinger, K. and Stoeppler, M. (1985) Methylation of mercury(II) by fulvic acid. Environ. TechnoL Letts 6, 203–208.

    Article  CAS  Google Scholar 

  • Westöö, G. (1973) Methylmercury as percentage of total mercury in flesh and viscera of salmon and sea trout of various ages. Science 181, 567–568.

    Article  Google Scholar 

  • van der Weijden, C.H. (1990) Behaviour of heavy metals upon transition from riverine to marine environment, in Program and Abstracts, V.M. Goldschmidt Conference (2–4 May, 1990, Baltimore, Maryland), pp. 88 (abstract).

    Google Scholar 

  • Wiener, J.G., Fitzgerald, W.F., Watras, CJ. and Rada, R.G. (1990) Partitioning and bioavailability of mercury in an experimentally acidified Wisconsin lake. Environ. Toxicol. Chem. 9, 909–918.

    Article  CAS  Google Scholar 

  • Wilken, R.-D. and Hintelmann, H. (1991) Mercury and methylmercury in sediments and suspended particles from the River Elbe, North Germany. Water Air Soil Polin 56, 427–437.

    Article  CAS  Google Scholar 

  • Williams, D.R. (1971) The Metals of Life, Van Nostrand Reinhold, London, New York, Cincinnati, Toronto, Melbourne.

    Google Scholar 

  • Windom, H.L. and Kendall, D.R. (1979) Accumulation and biotransformation of mercury in coastal and marine biota, in The Bio geochemistry of Mercury in the Environment, (ed. J.O. Nriagu), Elsevier/North-Holland Biomedical Press, Amsterdam, Oxford, New York, pp. 303–323.

    Google Scholar 

  • Winfrey, M.R. and Rudd, J.W.M. (1990) Environmental factors affecting the formation of methylmercury in low pH lakes. Environ. Toxicol. Chem. 9, 853–869.

    Article  CAS  Google Scholar 

  • Wobeser, G. (1974) Toxicity of methyl mercury for fish and mink, in Proceedings International Conference on Transport of Persistent Chemicals in Aquatic Ecosystems (1–3 May, 1974, Ottawa, Canada), Sect. III, p. 71 (abstract).

    Google Scholar 

  • Wobeser, G. (1975) Acute toxicity of methyl mercury chloride and mercuric chloride for rainbow trout (Salmo gairdneri) fry and fingerlings. J. Fish. Res. Board Can. 32, 2005–2013.

    Article  CAS  Google Scholar 

  • Wood, J.M. (1971) Environmental pollution by mercury, in Advances in Environmental Science and Technology, Vol. 2 (eds J.N. Pitts Jr and R.L. Metcalf), Wiley-Interscience (John Wiley & Sons), New York, Toronto, London, Sydney, pp. 39–56.

    Google Scholar 

  • Wood, J.M. (1980) The role of pH and oxidation-reduction potentials in the mobilization of heavy metals, in Polluted Rain, (eds T.Y Toribara, M.W. Miller and P.E. Morrow), Plenum Press, New York, London, pp. 223–232.

    Chapter  Google Scholar 

  • Wood, J.M., Kennedy, F.S. and Rosen, CG. (1968) Synthesis of methyl mercury compounds by extracts of a methanogenic bacterium. Nature 220, 173–174.

    Article  CAS  Google Scholar 

  • Wren, CD. and MacCrimmon, H.R. (1983) Mercury levels in the sunfish, Lepomis gibbosus, relative to pH and other environmental variables of Precambrian shield lakes. Can. J. Fish. Aquat. Sci. 40, 1737–1744.

    Article  CAS  Google Scholar 

  • Wren, CD., Scheider, W.A., Wales, D.L. et al. (1991) Relation between mercury concentrations in walleye (Stizostedion vitreum) and northern pike (Esox lucius) in Ontario lakes and influence of environmental factors. Can. J. Fish. Aquat. Sci. 48, 132–139.

    Article  CAS  Google Scholar 

  • Wright, D.A., Welbourn, P.M. and Martin, A.V.M. (1991) Inorganic and organic mercury uptake and loss by the crayfish Orconectes propinquus. Water Air Soil Polin 56, 697–707.

    Article  CAS  Google Scholar 

  • Wright, D.R. and Hamilton, R.D. (1982) Release of methyl mercury from sediments: effects of mercury concentration, low temperature, and nutrient addition. Can. J. Fish. Aquat. Sci. 39 1459 – 1466.

    Article  CAS  Google Scholar 

  • Xiao, Z.F., Strömberg, D. and Lindqvist, O. (1995) Influence of humic substances on photolysis of divalent mercury in aqueous solution. Water Air Soil Polin 80, 789–798.

    Article  CAS  Google Scholar 

  • Xu, H. and Allard, B. (1991) Effects of a fulvic acid on the speciation and mobility of mercury in aqueous solutions. Water Air Soil Polin 56, 709–717.

    Article  CAS  Google Scholar 

  • Xun, L., Campbell, N.E.R. and Rudd, J.W.M. (1987) Measurements of specific rates of net methyl mercury production in the water column and surface sediments of acidified and circumneutral lakes. Can. J. Fish. Aquat. Sci. 44, 750–757.

    Article  CAS  Google Scholar 

  • Zepp, R.G. (1988) Environmental photoprocesses involving natural organic matter, in Humic Substances and their Role in the Environment, (eds F.H. Frimmel and R.F. Christman), Wiley- Interscience (John Wiley & Sons), Chichester, New York, Toronto, Brisbane, Singapore, pp. 193–214.

    Google Scholar 

  • Zepp, R.G., Baughman, G.L., Wolfe, N.L. and Cline, D.M. (1974) Methylmercuric complexes in aquatic systems. Environ. Letts 6, 117–127.

    Article  CAS  Google Scholar 

  • Zhang, L. and Planas, D. (1994) Biotic and abiotic mercury methylation and demethy-lation in sediments. Bull. Environ. Contam. Toxicol. 52, 691–698.

    Article  CAS  Google Scholar 

  • Zvonarev, B.A. and Zyrin, N.G. (1982) Patterns of mercury sorption in soils. I. Effect of pH on mercury sorption by soils. Vestn. Mosk. Univ. Ser. 17: Pochvoved. 4, 43–48 (in Russian).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jackson, T.A. (1998). Mercury in aquatic ecosystems. In: Langston, W.J., Bebianno, M.J. (eds) Metal Metabolism in Aquatic Environments. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2761-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2761-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4731-4

  • Online ISBN: 978-1-4757-2761-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics