Skip to main content

Variable metric methods along geodetics

  • Chapter
New Trends in Mathematical Programming

Part of the book series: Applied Optimization ((APOP,volume 13))

Abstract

In the paper, the behaviour of variable metric methods along geodesics is analyzed. First, a general framework is given in the case of Riemannian submanifolds in R n, then two general convergence theorems for a wide class of nonlinear optimization methods are proved to find a stationary point or a local optimum point of a smooth function defined on a compact set of a Riemannian manifold and the rate of a convergence is studied. These methods and theorems should be extended in such a way that penalty methods be generalized in the case of inequality constraints defined on Riemannian manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertsekas, D. P., Constrained optimization and Lagrange multiplier methods, Academic Press, New York, London, 1982.

    Google Scholar 

  2. den Hertog, D., Roos, C. and Terlaky, T., On the classical logarithmic barrier method for a class of smooth convex programming problems, Journal of Optimization Theory and Applications 73 (1992) 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  3. Ferreira, O. P. and Oliveira, P. R., Subgradient algorithm on Riemannian manifolds, Publicacoes TĂ©cnicas, Rio de Janeiro (1995).

    Google Scholar 

  4. Fletcher, R., A general quadratic programming algorithm, Journal of the Institute of Mathematics and Its Applications 7 (1971) 76–91.

    Article  MathSciNet  MATH  Google Scholar 

  5. Forgo, F., A method for solving nonlinear programming problems approximately, Szigma 1 (1969) 67–75. (in Hungarian)

    Google Scholar 

  6. Gabay, D., Minimizing a differentiable function over a differentiable manifold, Journal of Optimization Theory and Applications 37 (1982) 177–219.

    Article  MathSciNet  MATH  Google Scholar 

  7. Giannessi, F., Theorems of the alternative and optimality conditions, Journal of Optimization Theory and Applications 42 (1984) 331–365.

    Article  MathSciNet  MATH  Google Scholar 

  8. Gill, P. E., Murray, W., Saunders, M. A., Tomlin, J A and Wright, M. H., On projected Newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method, Mathematical Programming 36 (1986) 183209.

    Google Scholar 

  9. Gonzaga, C. C., Polynomial affine algorithms for linear programming, Mathematical Programming 49 (1990) 7–21.

    Article  MathSciNet  MATH  Google Scholar 

  10. Iri, M. and Imai, H., A multiplicative barrier function method for linear programming, Algorithmica 1 (1986) 455–482.

    Article  MathSciNet  MATH  Google Scholar 

  11. Jarre, F., Interior-points methods for convex programming, Applied Mathematics and Optimization 26 (1992) 287–311.

    Article  MathSciNet  MATH  Google Scholar 

  12. Karmarkar, N., Riemannian geometry underlying interior points methods for linear programming, Contemporary Mathematics 114 (1990) 51–76.

    Article  MathSciNet  Google Scholar 

  13. Kobayashi, S. and Nomizu, K., Foundations of differential geometry, Inter-science Publishers, New-York, London, Sydney, 1969.

    Google Scholar 

  14. Lichnewsky, A, Minimization de fonctionnelle définies sur une variété par la method du gradient conjugué, Thèse de Doctorat d’État, Université de Paris-Sud, Paris, France, 1979.

    Google Scholar 

  15. Luenberger, D. G., The gradient projection methods along geodesics, Management Science 18 (1972) 620–631.

    Article  MathSciNet  MATH  Google Scholar 

  16. Luenberger, D. G., Introduction to linear and nonlinear programming, Addison-Wesley Publishing Company, Reading, 1973.

    MATH  Google Scholar 

  17. Mehrotra, S. and Sun, J., An interior point algorithm for solving smooth convex programs based on Newton’s method, Mathematical Developments Arising from Linear Programming, J. C. Lagarias and M. J. Todd, eds., Contemporary Mathematics 114 (1990) 265–284.

    Google Scholar 

  18. Nesterov, Y. E. and Nemirovsky, A. S., Self-concordant functions and polynomial time methods in convex programming, Report, Central Economic and Mathematical Institute, USSR Academy of Science, Moscow, USSR, 1989.

    Google Scholar 

  19. Neto, J. X. C. and Oliveira, P. R., Geodesic methods in Riemannian manifolds, Publicacoes TĂ©cnicas, Rio de Janeiro (1995).

    Google Scholar 

  20. Ortega, J. M. and Rheinboldt, N. C., Iterative solution of nonlinear equations in several variables, Academic Press, New York, New York, 1970.

    Google Scholar 

  21. Pappalardo, M., Image space approach to penalty methods, Journal of Optimization Theory and Applications 64 (1990) 141–152.

    Article  MathSciNet  MATH  Google Scholar 

  22. Polak, E., Computational methods in optimization, A unified approach, Academic Press, New York, New York, 1971.

    Google Scholar 

  23. Rapcsâk, T., An exterior point algorithms for solving convex nonlinear programming problems, Alkalmazott Matematikai Lapok 1 (1975) 357–354. (in Hungarian)

    MATH  Google Scholar 

  24. Rapcsâk, T., Geodesic convexity in nonlinear optimization, Journal of Optimization Theory and Applications 69 (1991) 169–183.

    Article  MathSciNet  MATH  Google Scholar 

  25. Rapcsâk, T. and Thang, T. T., Nonlinear coordinate representations of smooth optimization problems, Journal of Optimization Theory and Applications 86 (1995) 459–489.

    Article  MathSciNet  MATH  Google Scholar 

  26. Rapcsâk, T., Tensor applications of smooth nonlinear complementarity systems, in: Variational inequalities and network equilibrium problems, eds.: F. Giannessi and A. Maugeri, Plenum Press (1995) 235–249.

    Google Scholar 

  27. Rapcsâk, T. and Thang, T. T., A class of polynomial variable metric algorithms for linear optimization, Mathematical Programming 74 (1996) 319–331.

    Article  MathSciNet  MATH  Google Scholar 

  28. Schwartz, J. T., Nonlinear functional analysis, Gordon and Breach Science Publishers, New York, 1969.

    MATH  Google Scholar 

  29. Tanabe, K., A geometric method in nonlinear programming, Journal of Optimization Theory and Applications 30 (1980) 181–210.

    Article  MathSciNet  MATH  Google Scholar 

  30. Udriste, C., Convex functions and optimization methods on Riemannian manifolds, Kluwer Academic Publishers, Boston, 1994.

    Book  MATH  Google Scholar 

  31. Yamashita, H., A differential equation approach to nonlinear programming, Mathematical Programming 18 (1980) 155–168.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rapcsák, T. (1998). Variable metric methods along geodetics. In: Giannessi, F., Komlósi, S., Rapcsák, T. (eds) New Trends in Mathematical Programming. Applied Optimization, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2878-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2878-1_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4793-2

  • Online ISBN: 978-1-4757-2878-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics