Skip to main content

Reinforcements

  • Chapter
Composite Materials

Abstract

Reinforcements need not necessarily be in the form of long fibers. One can have them in the form of particles, flakes, whiskers, short fibers, continuous fibers, or sheets. It turns out that most reinforcements used in composites have a fibrous form because materials are stronger and stiffer in the fibrous form than in any other form. Specifically, in this category, we are most interested in the so-called advanced fibers, which possess very high strength and very high stiffness coupled with a very low density. The reader should realize that many naturally occurring fibers can be and are used in situations involving not very high stresses (Chawla, 1976; Chawla and Bastos, 1979). The great advantage in this case, of course, is its low cost. The vegetable kingdom is, in fact, the largest source of fibrous materials. Cellulosic fibers in the form of cotton, flax, jute, hemp, sisal, and ramie, for example, have been used in the textile industry, while wood and straw have been used in the paper industry. Other natural fibers, such as hair, wool, and silk, consist of different forms of protein. Silk fibers produced by a variety of spiders, in particular, appear to be very attractive because of their high work of fracture. Any discussion of such fibers is beyond the scope of this book. The interested reader is directed to some books that cover the vast field of fibers (Chawla, 1998; Warner, 1995). In this chapter, we confine ourselves to a variety of man-made reinforcements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • C.-H. Andersson and R. Warren (1984). Composites, 15, 16.

    Article  CAS  Google Scholar 

  • R. Bacon (1973). In Chemistry and Physics of Carbon, vol. 9, Marcel Dekker, New York, p. 1.

    Google Scholar 

  • A.A. Baker (1983). Metals Forum, 6, 81.

    CAS  Google Scholar 

  • P.J. Barham and A. Keller (1985). J. Mater. Sd, 20, 2281.

    Article  CAS  Google Scholar 

  • S.C. Bennett and D.J. Johnson (1978). In Fifth International Carbon and Graphite Conference, Society of the Chemical Industry, London, p. 377.

    Google Scholar 

  • S.C. Bennett and D.J. Johnson (1979). Carbon, 17, 25.

    Article  CAS  Google Scholar 

  • S.C. Bennett, D.J. Johnson, and W. Johnson (1983). J. Mater. Sc, 18, 3337.

    Article  CAS  Google Scholar 

  • D.A. Biro, G. Pleizier and Y. Deslandes (1992). J. Mater. Sci. Lett., 11, 698.

    Article  CAS  Google Scholar 

  • C.J. Brinker and G. Scherer (1990). The Sol-Gel Science, Academic Press, New York.

    Google Scholar 

  • J.R. Brown, P.J.C. Chappell and Z. Mathys (1992) J. Mater. Sci., 27, 3167.

    Article  CAS  Google Scholar 

  • G. Capaccio, A.G. Gibson, and I.M. Ward (1979). In Ultra-High Modulus Polymers, Applied Science Publishers, London, p. 1.

    Google Scholar 

  • K.K. Chawla (1976). In Proceedings of the International Conference on the Mechani cal Behavior of Materials II, ASM, Metals Park, Ohio, p. 1920.

    Google Scholar 

  • K.K. Chawla (1981). Mater. Sci. Eng., 48, 137.

    Article  Google Scholar 

  • K.K. Chawla (1998). Fibrous Materials, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • K.K. Chawla and A.C. Bastos (1979). In Proceedings of the International Conference on the Mechanical Behavior of Materials III, Pergamon Press, Oxford, p. 191.

    Google Scholar 

  • C.C. Chiao and T.T. Chiao (1982). In Handbook of Composites, Van Nostrand Reinhold, New York, p. 272.

    Chapter  Google Scholar 

  • E. de Lamotte and A.J. Perry (1970). Fibre Sci. Tech., 3, 157.

    Article  Google Scholar 

  • H.E. DeBolt (1982). In Handbook of Composites, Van Nostrand Reinhold, New York, p. 171.

    Google Scholar 

  • S.J. DeTeresa, S.R. Allen, R.J. Farris, and R.S. Porter (1984). J. Mater. Sd, 19, 57.

    Article  Google Scholar 

  • J.A. DiCarlo (June 1985). J. Met. 37, 44.

    Google Scholar 

  • R.J. Diefendorf and E. Tokarsky (1975). Polym. Eng. Sci., 15, 150.

    Article  CAS  Google Scholar 

  • M.G. Dobb, D.J. Johnson, and B.P. Saville (1980). Philos. Trans. R. Soc. London, A294, 483.

    Article  Google Scholar 

  • W.H. Dresher (April, 1969). J. Metals, 21, 17.

    Google Scholar 

  • H.N. Ezekiel and R.G. Spain (1967). J. Polym. Sci. C, 19, 271.

    Google Scholar 

  • P.J. Flory (1956). Proc. Roy. Soc. (London), 234A, 73.

    Google Scholar 

  • A. Fourdeux, R. Perret, and W. Ruland (1971). In Carbon Fibres: Their Composites and Applications, The Plastics Institute, London, p. 57.

    Google Scholar 

  • F. Galasso and A. Paton (1966). Trans. Met. Soc. AIME, 236, 1751.

    CAS  Google Scholar 

  • F. Galasso, D. Knebl, and W. Tice (1967). J. Appl. Phys., 38, 414.

    Article  CAS  Google Scholar 

  • D.G. Gasson and B. Cockayne (1970) J. of Mater. Sci., 5, 100.

    Article  CAS  Google Scholar 

  • J.S. Haggerty (1972). NASA-CR-120948, NASA Lewis Res. Center, Cleveland, OH.

    Google Scholar 

  • D.N. Hild and P. Schwartz (1992a) J. Adhes. Sci. Technol, 6, 879.

    Article  CAS  Google Scholar 

  • D.N. Hild and P. Schwartz (1992b) J. Adhes. Sci. Technol, 6, 897.

    Article  CAS  Google Scholar 

  • K.A. Hodd and D.C. Turley (1978). Chem. Br. 14, 545.

    CAS  Google Scholar 

  • G.F. Hurley and J.T.A. Pollack (1972). Met. Trans., 7, 397.

    Google Scholar 

  • O.T. Inal, N. Leca, and L. Keller (1980). Phys. Status Solidi, 62, 681.

    Article  CAS  Google Scholar 

  • M. Jaffe and R.S. Jones (1985). In Handbook of Fiber Science & Technology, vol. 111, High Technology Fibers, Part A, Marcel Dekker, New York, p. 349.

    Google Scholar 

  • J. Johnson and C.N. Tyson (1969). Br. J. Appl. Phys., 2, 787.

    Google Scholar 

  • R.W. Jones (1989). Fundamental Principles of Sol-Gel Technology, The Institute of Metals, London.

    Google Scholar 

  • B. Kalb and A.J. Pennings (1980). J. Mater. Sci., 15, 2584.

    Article  CAS  Google Scholar 

  • S.L. Kaplan, P.W. Rose, H.X. Nguyen and H.W. Chang (1988). SAMPE Quarterly, 19, 55.

    CAS  Google Scholar 

  • T. Kikuchi (1982). Surface, 20, 270.

    CAS  Google Scholar 

  • V. Krukonis (1977). In Boron and Refractory Borides, Springer-Verlag, Berlin, p. 517.

    Chapter  Google Scholar 

  • S.L. Kwolek, P.W. Morgan, J.R. Schaefgen, and L.W. Gultich (1977). Macromolecules, 10, 1390.

    Article  CAS  Google Scholar 

  • H.E. LaBelle (1971). Mater. Res. Bull, 6, 581.

    Article  Google Scholar 

  • H.E. LaBelle and A.I. Mlavsky (1970). Mater. Res. Bull, 6, 571.

    Google Scholar 

  • C. Laffon, A.M. Flank, P. Lagarde, M. Laridjani, R. Hagege, P. Olry, J. Cotteret, J. Dixmier, J.L. Niquel, H. Hommel and A.P. Legrand (1989). J. Mater Sci., 24, 1503.

    Article  CAS  Google Scholar 

  • R.M. Laine and F. Babonneau (1993). Chem. Mater., 5, 260.

    Article  CAS  Google Scholar 

  • R.M. Laine, Z-F. Zhang, K.W. Chew, M. Kannisto and C. Scotto (1995). In Ceramic Processing Science and Technology, Am. Ceram. Soc, Westerville, OH, p. 179.

    Google Scholar 

  • J.-G. Lee and I. B. Cutler (1975). Am. Ceram. Soc. Bull, 54, 195.

    CAS  Google Scholar 

  • Z.F. Li, A.N. Netravali and W. Sachse (1992). J. Mater. Sci., 27, 4625.

    Article  CAS  Google Scholar 

  • J. Lipowitz, J.A. Rabe, and L.K. Frevel (1990). J. Mater. Sci., 25, 2118.

    Article  CAS  Google Scholar 

  • K.L. Loewenstein (1983). The Manufacturing Technology of Continuous Glass Fibers, 2nd ed., Elsevier, New York.

    Google Scholar 

  • R.E. Lowrie (1967). In Modern Composite Materials, Addison-Wesley, Reading, MA, p.270.

    Google Scholar 

  • E.E. Magat (1980). Philos. Trans. R Soc. London, A296, 463.

    Article  Google Scholar 

  • T. Mah, N.L. Hecht, D.E. McCullum, J.R. Hoenigman, H.M. Kim, A.P. Katz, and H.A. Lipsitt (1984). J. Mater. Sci., 19, 1191.

    Article  CAS  Google Scholar 

  • J.V. Milcwski, J.L. Sandstrom, and W.S. Brown (1974). In Silicon Carbide 1973, University of South Carolina Press, Columbia, p. 634.

    Google Scholar 

  • J.V. Milewski, F.D. Gac, J.J. Petrovic, S.R. Skaggs (1985). J. Mater. Sci., 20, 1160.

    Article  CAS  Google Scholar 

  • P.W. Morgan (1979). Plast. Rubber: Mater. Appl., 4, 1.

    CAS  Google Scholar 

  • J.S. Murday, D.D. Dominguez, L.A. Moran, W.D. Lee, and R. Eaton (1984). Synth. Met. 9, 397.

    Article  CAS  Google Scholar 

  • M.G. Northolt (1981). J. Mater. Sci., 16, 2025.

    Article  CAS  Google Scholar 

  • S. Ozawa, Y. Nakagawa, K. Matsuda, T. Nishihara and H. Yunoki (1978). US patent 4,075,172

    Google Scholar 

  • B. Parkyn (Ed.) (1970). Glass Reinforced Plastics, Butterworth, London.

    Google Scholar 

  • R. Perret and W. Ruland (1970). J. Appl. Crystallogr., 3, 525.

    Article  CAS  Google Scholar 

  • J.J. Petrovic. J.V. Milewski. D.L. Rohr, and F.D. Gac (1985). J. Mater. Sd., 20, 1167.

    Article  Google Scholar 

  • J.T.A. Pollack (1972) J. Mater. Sci., 7, 787.

    Article  Google Scholar 

  • J.P. Riggs (1985). In Encyclopedia of Polymer Science & Engineering, 2nd ed., vol. 2, John Wiley & Sons, New York, p. 640.

    Google Scholar 

  • M.D. Sacks, G.W. Scheiffele, M. Saleem, G.A. Staab, A.A. Morrone and T.J. Williams (1995). Ceramic Matrix Composites: Advanced High-Temperature Structural Materials, MRS, Pittsburgh, PA, p. 3.

    Google Scholar 

  • S. Sakka (1985). Am. Ceram. Soc. Bull, 64, 1463.

    CAS  Google Scholar 

  • G. Simon and A.R. Bunsell (1984). J. Mater. Sci., 19, 3649.

    Article  CAS  Google Scholar 

  • L.S. Singer (1979). In Ultra-High Modulus Polymers, Applied Science Publishers, Essex, England, p.251.

    Google Scholar 

  • A. Shindo (1961). Rep. Osaka Ind. Res. Inst. No. 317.

    Google Scholar 

  • P. Smith and P.J. Lemstra (1976). Colloid Polymer Sci., 15, 258.

    Google Scholar 

  • W.D. Smith (1977). In Boron and Refractory Borides, Springer-Verlag, Berlin, p. 541.

    Chapter  Google Scholar 

  • J. Smook and A.J. Pennings (1984). J. Mater. Sci., 19, 31.

    Article  CAS  Google Scholar 

  • H.G. Sowman (1988). In Sol-Gel Technology, L.J. Klein (ed), Noyes Pub., Park Ridge, NJ, p. 162.

    Google Scholar 

  • C.P. Talley (1959). J. Appl. Phys., 30, 1114.

    Article  CAS  Google Scholar 

  • C.P. Talley, L. Line, and O. Overman (1960). In Boron: Synthesis, Structure, and Properties, Plenum Press, New York, p. 94.

    Google Scholar 

  • D. Tanner, A.K. Dhingra, and J.J. Pigliacampi (March, 1986). J. Met., 38, 21.

    CAS  Google Scholar 

  • W. Toreki, CD. Batich, M.D. Sacks, M. Saleem, G.J. Choi, and A.A. Morrone (1994). Compos. Sci and Technol., 51, 145.

    Article  CAS  Google Scholar 

  • A.C. van Maaren, O. Schob, and W. Westerveld (1975). Philips Tech. Rev., 35, 125.

    Google Scholar 

  • J. Vega-Boggio and O. Vingsbo (1978). In 1978 International Conference on Composite Materials, ICCM/2, TMS-AIME, New York, p. 909.

    Google Scholar 

  • F.T. Wallenberger, N.E. Weston, K. Motzfeldt and D.G. Swartzfager (1992). J. Amer. Ceram. Soc., 75, 629.

    Article  CAS  Google Scholar 

  • S.B. Warner (1995). Fiber Science, Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • R. Warren and C.-H. Andersson (1984). Composites, 15, 101.

    Article  CAS  Google Scholar 

  • W. Watt (1970). Proc. R. Soc., A319, 5.

    Google Scholar 

  • W. Watt and W. Johnson (1969). Appl. Polym. Symp., 9, 215.

    Google Scholar 

  • F.W. Wawner (1967). In Modern Composite Materials, Addison-Wesley, Reading, MA, p. 244.

    Google Scholar 

  • S.G. Wax (1985). Am. Ceram. Soc. Bull, 64, 1096.

    Google Scholar 

  • E. Weintraub (1911). J. Ind. Eng. Chem., 3, 299.

    Article  CAS  Google Scholar 

  • R.R. Wills, R.A. Mankle, and S.P. Mukherjee (1983). Am. Ceram. Soc. Bull. 62, 904.

    CAS  Google Scholar 

  • D.M. Wilson (1990). In Proc. 14th Conf. on Metal Matrix, Carbon, and Ceramic Matrix Composites, Cocoa Beach, FL, Jan. 17–19, 1990, NASA Conference Publication 3097, Part 1, p. 105.

    Google Scholar 

  • K.J. Wynne and R.W. Rice (1984). Ann. Rev. Mater. Sci., 15, 297.

    Article  Google Scholar 

  • S. Yajima (1980). Philos. Trans. R Soc. London, A294, 419.

    Article  Google Scholar 

  • S. Yajima, K. Okamura, J. Hayashi, and M. Omori (1976). J. Am. Ceram. Soc., 59, 324.

    Article  CAS  Google Scholar 

  • Z.-F. Zhang, S. Scotto and R.M. Laine (1994) in Ceram. Eng. Sci. Proc., 15, 152.

    Article  CAS  Google Scholar 

Suggested Reading

  • A.R. Bunsell (Ed.) (1988). Fibre Reinforcements for Composite Materials, Elsevier, Amsterdam.

    Google Scholar 

  • K.K. Chawla (1998). Fibrous Materials, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • J.B. Donnet and R.C. Bansal (1984). Carbon Fibers, second edition, Marcel Dekker, New York.

    Google Scholar 

  • E. Fitzer (1985). Carbon Fibres and Their Composites, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • L. H Peebles (1995). Carbon Fibers, CRC Press, Boca Raton, FL.

    Google Scholar 

  • S.B. Warner (1995). Fiber Science, Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • W. Watt and B. V. Perov (Eds.) (1985). Strong Fibres, vol. 1. in the Handbook of Composites series, North-Holland, Amsterdam.

    Google Scholar 

  • Yang, H.H. (1993). Kevlar Aramid Fiber, John Wiley, Chichester, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chawla, K.K. (1998). Reinforcements. In: Composite Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2966-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2966-5_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3124-5

  • Online ISBN: 978-1-4757-2966-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics