Skip to main content

Abstract

In the previous chapters we have seen how to design input stages and output stages. The next step in the design of operational amplifiers consists of determining the required number of stages; for that we consider the main overall parameters of amplifiers. The main overall parameters of operational amplifiers are dc-gain and speed. The gain sets an upper limit for the low-frequencies accuracy of the feedback system in which the amplifier is applied, while speed, in terms of bandwidth, determines the accuracy at higher frequencies. Generally, increasing the number of stages improves the gain but reduces the bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Buh, G.J.G.M. Geelen, “A fast settling CMOS op amp for SC-circuits with 90-dB DC gain”, IEEE J. Solid-State Circuits, vol. SC-25, no. 12, pp. 1379–1383, Dec. 1990.

    Google Scholar 

  2. R. Hogervorst, S.M. Safai, J.P. Tero, J.H. Huijsing, “A Programmable Power-Efficient 3-V CMOS Rail-to-Rail Opamp with Gain Boosting for Driving Heavy Resistive Loads”, Proc. IEEE International Symposium on Circuits and Systems, Seattle, USA, pp. 1544–1547, April 30 - May 3, 1995.

    Google Scholar 

  3. E.M. Cherry, D.E. Hooper, Amplifier Devices and Low-pass Amplifier Design. New York: Wiley, 1968.

    Google Scholar 

  4. H.W. Bode, Network Analysis and Feedback Amplifier Design. New York: Van Nostrand, 1949.

    Google Scholar 

  5. H. Nyquist, “Regeneration Theory”, Bell Systems Technical Journal, Jan. 1932.

    Google Scholar 

  6. E.M. Cherry, D.E. Hooper, Amplifier Devices and Low-pass Amplifier Design. New York: Wiley, 1968.

    Google Scholar 

  7. R.G.H. Eschauzier and J.H. Huijsing, Frequency compensation techniques for low-power operational amplifiers. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1995.

    Google Scholar 

  8. M.J. Fonderie, J.H. Huijsing, Design of Low-voltage Bipolar Operational Amplifiers. Boston: Kluwer, 1993.

    Book  Google Scholar 

  9. K.J. de Langen, R.G.H. Eschauzier, and J.H. Huijsing, “A I-GHz Class-AB Operational Amplifier with Multipath Nested Miller Compensation for 76-dB Gain”, IEEE J. Solid-State Circuits, vol. SC-32, no. 4, pp. 488–498, April 1997. K.J. de

    Google Scholar 

  10. Langen, J.H. Huijsing, “Compact Low-Voltage Power-Efficient Operational Amplifier Cells for VLSI”, IEEE J. Solid-State Circuits, vol. SC-33, no. 10, pp. 1482–1496, Oct. 1997

    Google Scholar 

  11. J.E. Solomon, “The Monolithic Op Amp: A Tutorial Study”, IEEE J. Solid-State Circuits. Vol. SC-3, No. 6, pp. 314–332, Dec. 1974.

    Article  Google Scholar 

  12. R.J. Reay, G.T.A. Kovacs, “An Unconditionally Stable Two-Stage CMOS Amplifier, IEEE J. Solid-State Circuits, vol. SC-30, no. 5, pp. 591–594, May 1995.

    Google Scholar 

  13. R.G.H. Eschauzier, J.H. Huijsing, “An Operational Amplifier with Multipath Miller Zero Cancellation for RHP Zero Removal”, in Proc. ESSCIRC 1993, Editions Frontières, Gif-sur-Yvettes, France.

    Google Scholar 

  14. J.H. Huijsing, R.G.H. Eschauzier, “Amplifier arrangement with multipath miller zero cancellation”, U.S Patent No. 5,485,121, Jan. 16, 1996.

    Google Scholar 

  15. B.K. Ahuja, “An Improved Frequency Compensation Technique for CMOS Operational Amplifiers, IEEE J. Solid-State Circuits, vol. SC-18, no. 6, pp. 629633, Dec. 1983.

    Google Scholar 

  16. R. Hogervorst, J.H. Huijsing, Design of Low-Voltage Low-Power Operational Amplifier Cells. Dordrecht, The Netherlands: Kluwer, 1996.

    Google Scholar 

  17. J.H. Huijsing, “Multistage amplifier with capacitive nesting for frequency compensation”, U.S. Patent No. 4,559,502, Dec. 17, 1985.

    Google Scholar 

  18. J.H. Huijsing, D. Linebarger, “Low-Voltage Operational Amplifier with Rail-toRail Input and Output Ranges”, IEEE J. Solid-State Circuits, Vol SC-20, No. 6, pp. 1144–1150, Dec. 1985.

    Google Scholar 

  19. J.H. Huijsing and M.J. Fonderie, “Multi-stage amplifier with capacitive nesting and multi-path forward feeding for frequency compensation”, U.S Patent No. 5,155,447, Oct. 4, 1992.

    Google Scholar 

  20. M.J. Fonderie and J.H. Huijsing, “Operational Amplifier with 1-V Rail-to-Rail Multipath-Driven Output Stage, IEEE J. Solid-State Circuits, vol. SC-26, no. 12, pp. 1817–1824, Dec. 1991.

    Google Scholar 

  21. R.G.H. Eschauzier, L.P.T. Kerklaan, and J.H. Huijsing, “A 100-MHz 100-dB Operational Amplifier with Multipath Nested Miller Compensation Structure”, IEEE J. Solid-State Circuits, vol. SC-27, no. 12, pp. 1709–1717, Dec. 1992.

    Google Scholar 

  22. B.Y. Kamath, R.G. Meyer, P.R. Gray, “Relationship between Frequency Response and Settling Time of Operational Amplifier”, IEEE J. Solid-State Circuits, vol. SC-9, pp. 347–352, no. 6, Dec. 1974.

    Google Scholar 

  23. F. You, S.H.K. Embabi, E. Sanchez-Sinencio, “Multistage Amplifier Topologies with Nested G,,,-C Compensation”, IEEE J. Solid-State Circuits, vol. SC-32, no. 12, pp. 2000–2011, Dec. 1997.

    Google Scholar 

  24. E. Seevinck, W. de Jager, P. Buitendijk, “A Low-Distortion Output Stage with improved stability for monolithic power amplifiers”, IEEE J. Solid-State Circuits, Vol. SC-23, pp. 794–801, June 1988.

    Google Scholar 

  25. B.Y. Kamath, R.G. Meyer and P.R. Gray, “Relationship Between Frequency Response and Settling Time of Operational Amplifiers”, IEEE J. Solid-State Circuits, vol. SC-9, no. 6, pp. 347–352, Dec. 1974.

    Google Scholar 

  26. R.G.H. Eschauzier and J.H. Huijsing, Frequency compensation techniques for low-power operational amplifiers. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1995.

    Google Scholar 

  27. R.G.H. Eschauzier, R. Hogervorst, J.H. Huijsing, “A Programmable 1.5 V CMOS Class-AB Operational Amplifier with Hybrid Nested Miller Compensation for 120 dB Gain and 6 MHz UGF”, IEEE J. Solid-State Circuits, vol. SC-29, no. 12, pp. 1497–1504, Dec. 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Langen, KJ., Huijsing, J.H. (1999). Overall-Design Techniques. In: Compact Low-Voltage and High-Speed CMOS, BiCMOS and Bipolar Operational Amplifiers. The Springer International Series in Engineering and Computer Science, vol 520. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2993-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2993-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5102-1

  • Online ISBN: 978-1-4757-2993-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics