Skip to main content

Quasi-Exponential Solutions for Some PDE with Coefficients of Limited Regularity

  • Chapter
Direct and Inverse Problems of Mathematical Physics

Part of the book series: International Society for Analysis, Applications and Computation ((ISAA,volume 5))

  • 813 Accesses

Abstract

Let \(\Omega \subset {R^3}\) be a bounded Lipshitz domain, and let \(\zeta \in {C^3},\zeta \cdot \zeta = 0.\) In Ω, consider an elliptic equation

$$div\left( {a\nabla u} \right) + b\cdot \nabla u + cu = 0$$

with \(a \in {C^1}\left( {\bar \Omega } \right),b \in {L^\infty }\left( \Omega \right).\) Assume also that a is real valued and has a positive lower bound. We prove that for |ζ| sufficiently large, this equation has special quasi-exponential solutions of the form

$$u = {e^{ - \frac{1}{2}i\zeta \cdot x}}\left( {1 + w\left( {x,\zeta } \right)} \right)$$

depending on parameter ζ and such that \({\left\| \omega \right\|_{{L^2}\left( \Omega \right)}} = 0\left( {|\zeta {|^{ - \alpha }}} \right),\) for any α ∈ (0,1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BU] Brown R.M. and Uhlmann G. Uniqueness in the Inverse Conductivity Problem for Nonsmooth Conductivities in Two Dimensions. To appear in Comm. in PDE.

    Google Scholar 

  2. Calderon A.P. On an Inverse Boundary Value Problem. Seminar on Numerical Analysis and Its Applications to Continuum Physics, Rio de Janeiro, 1980, 65–73.

    Google Scholar 

  3. ER] Eskin G. and Ralston J. Inverse Scattering Problem for the Scrödinger equation with Magnetic Potential at a Fixed Energy Comm.Math.Phys., 1995, (173), 173–199.

    Google Scholar 

  4. Fedoryuk M.V. Asymptotics: Integrals and Series, Nauka, Moscow, 1987. ( Russian).

    Google Scholar 

  5. HeN] Henkin G.M. and Novikov R.G. The â-e q uation in the Multidimensional Inverse Scattering Problem Russian Math. Serveys, 1987,42, 101–180.

    Google Scholar 

  6. H] Hörmander L. Analysis of Linear Partial Differential Operators,Springer-Verlag.

    Google Scholar 

  7. I] Isakov V. Completeness of Products of Solutions and Some Inverse Problems for PDE. J Diff. Equations, 1991,92, 305–317.

    Google Scholar 

  8. Il] Isakov V. Inverse Problems for PDE Springer-Verlag, 1997.

    Google Scholar 

  9. N] Nachman A. Reconstruction from Boundary Measurements Ann. Math., 1988, 128, 531–577.

    Google Scholar 

  10. NU] Nakamura G. and Uhlmann G. Global Uniqueness for an Inverse Boundary Value Problem Arising in Elasticity Invent. Math., 1994,118, 457474.

    Google Scholar 

  11. S] Stein E.M. Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals Prinnceton University Press, 1993.

    Google Scholar 

  12. Sh] Shubin M.A. Pseudodifferential Operators and Spectral Theory Springer-Verlag, 1987.

    Google Scholar 

  13. SU] Sylvester J and Uhlmann G Global Uniqueness Theorem for an Inverse Boundary Value Problem Ann. Math., 1987,125, 153–169.

    Google Scholar 

  14. Su] Sun Z. An Inverse Boundary Value Problem for Schrodinger Operator with Vector Potentials Trans. AMS, 1993, 338, 2, 953–969.

    Google Scholar 

  15. T] Taylor M.E.Pseudeodifferential Operators and Nonlinear PDE Birkhauser, Boston, 1991.

    Google Scholar 

  16. To] Tolmasky C.F. Exponentially Growing Solutions for Non-smooth First Order Perturbations of the Laplacian. To appear in SIAM J. Math. Anal.

    Google Scholar 

  17. V] Vaiberg B.R. Asymptotic Methods in Equations of Mathematical Physics Gordon and Breach, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Panchenko, A. (2000). Quasi-Exponential Solutions for Some PDE with Coefficients of Limited Regularity. In: Gilbert, R.P., Kajiwara, J., Xu, Y.S. (eds) Direct and Inverse Problems of Mathematical Physics. International Society for Analysis, Applications and Computation, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3214-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3214-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4818-2

  • Online ISBN: 978-1-4757-3214-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics