Skip to main content

Plastic Buckling

  • Chapter
Applied Plasticity

Part of the book series: Mechanical Engineering Series ((MES))

  • 540 Accesses

Abstract

In a typical boundary value problem, involving prescribed nominal traction rates on a part S F of the boundary surface, and prescribed velocities on the remainder S v , more than one mode of deformation may be possible when the applied load reaches a critical value. The lack of uniqueness of the deformation mode under given boundary conditions is commonly referred to as bifurcation, the current shape and mechanical state of the body being supposed to be given or previously determined. For a linear solid, in which the strain rate is a unique linear function of the stress rate during both loading and unloading, a bifurcation mode corresponds to an eigensolution of the field equations, and represents a mode quasi-statically possible under constant loads on S F and rigid constraints on S v In dealing with the conventional elastic/plastic solid, which is bilinear in the sense that the strain rate is related to the stress rate by separate linear functions for loading and unloading, it is convenient to introduce a linear comparison solid with identical boundary conditions (Section 1.5). While bifurcation in the linearized solid can occur under any given traction rates on S f and velocities on S v when the load becomes critical, bifurcation in the actual elastic/plastic solid would occur only under those traction rates for which there is no instantaneous unloading of the material that is currently plastic. The incremental theory of plasticity will be almost exclusively used in this chapter for the estimation of the critical load.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ades, CS. (1957), Bending Strength of Tubes in the Plastic Range, J. Aeronaut. Sci., 24, 505.

    Google Scholar 

  • Akserland, E.L. (1965), Refinement of Upper Critical Loading of Pipe Bending Taking Account of Geometric Nonlinearity (in Russian), Mekhanika: Machinostroenic, Izv. Akad Nauk, SSSR, 4 123.

    Google Scholar 

  • Alexander, J.M. (1960), An Approximate Analysis of the Collapse of Thin Cylindrical Shells Under Axial Loading, Quart. J. Mech. Appl. Math., 13, 10.

    Article  MathSciNet  MATH  Google Scholar 

  • Ariaratnam, S.T. and Dubey, R.N. (1969), Instability in an Elastic-Plastic Cylindrical Shell Under Axial Compression, J. Appl. Mech., 36, 47.

    Article  Google Scholar 

  • Ashwell, D.G. (1959), On the Large Deflection of a Spherical Shell with an Inward Point Load, Proc. IUTAM on Theory of Thin Elastic Shells, Delft.

    Google Scholar 

  • Babcock, CD. (1983), Shell Stability, J. Appl. Mech., 50, 935.

    Article  Google Scholar 

  • Baker, J.F., Horne, M.R., and Roderick, J.W. (1949), The Behaviour of Continuous Stanchions, Proc. Roy. Soc. London Ser. A., 198, 493.

    Article  MATH  Google Scholar 

  • Batdorf, S.R. (1949), Theories of Elastic-Plastic Buckling, J. Aeronaut. Sci., 16, 405.

    Google Scholar 

  • Batterman, S. (1964), Load-Deflection Behaviour of Shells of Revolution, J. Engng. Mech. Div., Proc. ASCE, 90, EM6, 4167.

    Google Scholar 

  • Batterman, S. (1965), Plastic Buckling of Axially Compressed Cylindrical Shells, AIAA J., 3, 316.

    Article  MATH  Google Scholar 

  • Batterman, S. (1968), Free Edge Buckling of Axially Compressed Cylindrical Shells, J. Appl. Mech., 35, 73.

    Article  Google Scholar 

  • Batterman, S. (1969), Plastic Buckling of an Externally Pressurized Complete Spherical Shell, J. Engng. Mech. Div., Proc. ASCE, 95.

    Google Scholar 

  • Bijlaard, PP. (1949), Theory and Tests on the Plastic Stability of Plates and Shells, J. Aeronaut. Sci., 16, 529.

    MathSciNet  Google Scholar 

  • Bijlaard, PP. (1956), Theory of Plastic Buckling of Plates and Application to Simply Supported Plates Subjected to Bending or Eccentric Compression in Their Plane, J. Appl. Mech., 23, 27.

    MATH  Google Scholar 

  • Brazier, L.G. (1926), On the Flexure of Thin Cylindrical Shells and Other Sections, Proc. Roy. Soc. London Ser. A, 116, 104.

    Google Scholar 

  • Bushnell, D. (1982), Plastic Buckling of Various Shells, J. Pressure Vessels Technol., Trans. ASME, 104, 51.

    Article  Google Scholar 

  • Bushnell, D. and Galletly, G.D. (1974), Comparison of Test and Theory for Nonsymmetric Elastic-Plastic Buckling of Shells of Revolution, Int. J. Solids Struct., 10, 1271.

    Article  Google Scholar 

  • Chakrabarty, J. (1973), Plastic Buckling of Cylindrical Shells Under Uniform External Pressure, Z. Angew. Math. Phys., 24, 270.

    Article  MathSciNet  MATH  Google Scholar 

  • Chakrabarty, J. (1998), Theory of Plasticity, 2nd ed., McGraw-Hill, Singapore.

    Google Scholar 

  • Chawalla, E. (1937), Aussermittig Gedruckte Baustahlstabe mit Elastisch Eingespannten Enden und Verschieden Grossen Angriffschebeln, Der Stahlbau, 15, 49.

    Google Scholar 

  • Chen, W.F. (1970), General Solution of Inelastic Beam-Column Problems, Engng. J. Mech. Div., Proc. ASCE, 96, EM4, 421.

    Google Scholar 

  • Chen, W.F. and Astuta, T. (1976), Theory of Beam Columns, Vol. 1, McGraw-Hill, New York.

    Google Scholar 

  • Corona, E. and Kyriakides, S. (1988), On the Collapse of Inelastic Tubes Under Combined Bending and Pressure, Int. J. Solids Struct., 24, 505.

    Article  Google Scholar 

  • Donneil, L.H. (1933), Stability of Thin Walled Tubes Under Torsion, NACA Report 479, pp. 1–24.

    Google Scholar 

  • Dubey, R.N. (1978), On Bifurcation in Elastic-Plastic Solids, Nucl, Engng. Des., 49, 217.

    Article  Google Scholar 

  • El-Ghazaly, H.A. and Sherbourne, A.N. (1986), Deformation Theory for Elastic-Plastic Buckling Analysis of Plates Under Nonproportional Planar Loading, Computers and Structures, 22, 131.

    Article  Google Scholar 

  • Engesser, F. (1898), Z Ver. Deut. Ingr., 42, 927.

    Google Scholar 

  • Flügge, W. (1932), Die Stabilität der Kreiszylinderschale, Ingenieur-Archiv, 3, 24.

    Article  Google Scholar 

  • Gellin, S. (1979), Effect of an Axisymmetric Imperfection on the Plastic Buckling of an Axially Compressed Cylindrical Shell, J. Appl. Mech., 46, 125.

    Article  MATH  Google Scholar 

  • Gellin, S. (1980), The Plastic Buckling of Long Cylindrical Shells Under Pure Bending, Int. J. Solids Struct., 16, 397.

    Article  MathSciNet  MATH  Google Scholar 

  • Gerard, G. (1957), Handbook of Structural Stability, Part I, Buckling of Flat Plates, NACA TN3781.

    Google Scholar 

  • Gerard, G. (1962), Introduction to Structural Stability Theory, McGraw-Hill, New York.

    Google Scholar 

  • Gjelsvik, A. and Lin, G.S. (1985), Plastic Buckling of Plates with Edge Frictional Shear Effects, J. Engng. Mech. Div., Trans. ASCE, 113, 953.

    Article  Google Scholar 

  • Hamada, H. (1985), In-Plane Buckling of Circular Plates, Proc. J. Soc. Mech. Engrs., 51, 1928.

    Google Scholar 

  • Hill, R. and Sewell, M.J. (1960), A General Theory of Inelastic Column Failure—I and II, J. Mech. Phys. Solids, 8, 105 and 112.

    Article  MathSciNet  MATH  Google Scholar 

  • Hill, R. and Sewell, M.J. (1962), A General Theory of Inelastic Column Failure—III, J. Mech. Phys. Solids, 10, 185.

    Article  MathSciNet  MATH  Google Scholar 

  • Horne, M.R. (1956), The Elastic-Plastic Theory of Compression Members, J. Mech. Phys. Solids, 4, 104.

    Article  MATH  Google Scholar 

  • Home, M.R. and Merchant, W. (1965), The Stability of Frames, Pergamon Press, Oxford, UK.

    Google Scholar 

  • Hutchinson, J.W. (1972), On the Postbuckling Behavior of Imperfection Sensitive Structures in Plastic Range, J. Appl. Mech., 39, 155.

    Article  Google Scholar 

  • Hutchinson, J.W. (1973), Imperfection Sensitivity in the Plastic Range, J. Mech. Phys. Solids, 21, 163.

    Article  MATH  Google Scholar 

  • Hutchinson, J.W. (1974), Plastic Buckling, Adv. in Appl. Mech., 14, 67.

    Google Scholar 

  • Inoue, T. and Kato, B. (1993), Analysis of Plastic Buckling of Steel Plates, Int. J. Solids Struct., 15, 567.

    Google Scholar 

  • Ketter, R.L. (1961), Further Studies of the Strength of Beam Columns, J. Struct. Div., Proc. ASCE, 87, ST6, 135.

    Google Scholar 

  • Leckie, RA. and Penny, R.K. (1968), Plastic Instability of Spherical Shells, in Engineering Plasticity (eds., J. Heyman and F.A. Leckie), Cambridge University Press, UK, p. 401.

    Google Scholar 

  • Lee, L.H.N. (1962), Inelastic Buckling of Initially Imperfect Cylindrical Shells Subject to Axial Compression, J. Aeronaut. Sci., 29, 87.

    MATH  Google Scholar 

  • Li, S. and Reid, S.R. (1992), The Plastic Buckling of Axial Compressed Square Tubes, J. Appl. Mech., 59, 276.

    Article  MATH  Google Scholar 

  • Lu, L.W. and Kamalvand, H. (1968), Ultimate Strength of Laterally Loaded Columns, J. Struct. Div., Proc. ASCE, 94, ST6, 1505.

    Google Scholar 

  • Mamalis, A.G. and Johnson, W. (1983), Quasi-Static Crumpling of Thin-Walled Circular Cylinders and Frusta Under Axial Compression, Int. J. Mech. Sci., 25, 713.

    Article  Google Scholar 

  • Needleman, A. (1975), Post-Bifurcation Behavior and Imperfection Sensitivity of Elastic/Plastic Circular Plates, Int. J. Mech. Sci., 17, 1.

    Article  Google Scholar 

  • Onat, E.T. and Drucker, D.C. (1953), Inelastic Instability and Incremental Theories of Plasticity, J. Aeronaut. Sci., 20, 181.

    MathSciNet  Google Scholar 

  • Pearson, CE. (1950), Bifurcation Criteria and Plastic Buckling of Plates and Columns, J. Aeronaut. Sci., 17, 417.

    MathSciNet  Google Scholar 

  • Pearson, C.E. (1956), A General Theory of Elastic Stability, Quart. Appl. Math., 14, 133.

    MathSciNet  MATH  Google Scholar 

  • Petryk, H. (1983), A Stability Postulate for Quasi-Static Processes of Plastic Deformation, Arch. Mech., 35, 753.

    MathSciNet  MATH  Google Scholar 

  • Pugsley, A. (1979), On the Crumpling of Thin Cylindrical Tubes, Quart. J. Mech. Appl. Math., 32, 1.

    Article  MathSciNet  Google Scholar 

  • Pugsley, A. and Macaulay, M. (1960), Large Scale Crumpling of Thin Cylindrical Columns, Quart. J. Mech. Appl. Math., 13, 1.

    Article  MathSciNet  Google Scholar 

  • Reddy, B.D. (1979), Plastic Buckling of a cylindrical Shell in Pure Bending, Int. J. Mech. Sci., 21, 671.

    Article  MATH  Google Scholar 

  • Reddy, B.D. (1980), Buckling of Elastic-Plastic Discretely Stiffened Cylinders in Axial Compression, Int. J. Solids Struct., 16, 313.

    Article  MATH  Google Scholar 

  • Rees, D.W.A. (1982), Plastic Torsional Buckling of Thin-Walled Cylinders, J. Appl. Mech., 49, 663.

    Article  Google Scholar 

  • Seide, P. and Weingarten, V.I. (1961), On the Buckling of Circular Cylindrical Shells Under Pure Bending, J. Appl. Mech., 28, 112.

    Article  MathSciNet  Google Scholar 

  • Sewell, M.J. (1963), A General Theory of Elastic and Inelastic Plate Failure, Part I, J. Mech. Phys. Solids, 11, 377.

    Article  MathSciNet  MATH  Google Scholar 

  • Sewell, M.J. (1964), A General Theory of Elastic and Inelastic Plate Failure, Part II, J. Mech. Phys. Solids, 12, 279.

    Article  MathSciNet  Google Scholar 

  • Sewell, M.J. (1973), A Yield Surface Corner Lowers the Buckling Stress of an Elastic/Plastic Plate, J. Mech. Phys. Solids, 21, 19.

    Article  MATH  Google Scholar 

  • Shanley, F.R. (1947), Inelastic Column Theory, J. Aeronaut. Sci., 14, 251.

    MATH  Google Scholar 

  • Shrivastava, H.P. (1979), Inelastic Buckling of Axially Compressed Cylindrical Shells, Int. J. Solids Struct., 15, 567.

    Article  MathSciNet  MATH  Google Scholar 

  • Southwell, R.V. (1913), On the Collapse of Tubes by External Pressure, Phil. Mag., 25, 687.

    MATH  Google Scholar 

  • Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, 2nd ed., McGraw-Hill, New York.

    Google Scholar 

  • Tomita, Y. (1994), Simulations of Plastic Instabilities in Solid Mechanics, Appl. Mech. Rev., 47, 171.

    Article  Google Scholar 

  • Tugcu, P. (1991), Plate Buckling in the Plastic Range, Int. J. Mech. Sci., 33, 1.

    Article  Google Scholar 

  • von Karman, Th. (1910), Untersuchungen Ãœber Knickfestigkeit, Mitteilungen Ãœber Forschungsarbeit, Ver. Deut. Ing., Vol. 81, Springer-Verlag, Berlin.

    Google Scholar 

  • Wierzbicki, T. and Abramowicz, W. (1983), On the Crushing Mechanism of Thin-Walled Structures, J. Appl. Mech., 50, 727.

    Article  MATH  Google Scholar 

  • Zhang, L.C. and Yu, T.X. (1987), An Investigation of the Brazier Effect of a Cylindrical Tube Under Pure Elastic-Plastic Bending, Int, J. Pres. Ves. Piping, 30, 77.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chakrabarty, J. (2000). Plastic Buckling. In: Applied Plasticity. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3268-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3268-9_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-3270-2

  • Online ISBN: 978-1-4757-3268-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics