Skip to main content

Feedback Control of Uncertain Systems

  • Chapter
A Course in Robust Control Theory

Part of the book series: Texts in Applied Mathematics ((TAM,volume 36))

Abstract

In this chapter we bring together the separate threads of synthesis of feedback controllers in the absence of uncertainty, and analysis of uncertain systems, into a common problem involving both uncertainty and control. This problem is represented by the diagram shown in Figure 9.1, where G is the generalized plant as in earlier chapters, but now also describes dependence on system uncertainty. The perturbation Δ belongs to a structured ball, and K represents the controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and references

  1. G. Zames. On the input-output stability of time varying nonlinear feedback systems. Part I: Conditions derived using concepts of loop gain, conicity, and positivity. IEEE Transactions on Automatic Control, 11: 228–238, 1966.

    Article  Google Scholar 

  2. V. M. Popov. On the absolute stability of nonlinear systems of automatic control. Automation and Remote Control, 22: 857–875, 1961.

    MathSciNet  Google Scholar 

  3. V. A. Yakubovich. Frequency conditions for the absolute stability of control systems with several nonlinear or linear nonstationary units. Automat. Telemech., pages 5–30, 1967.

    Google Scholar 

  4. C.A. Desoer and M. Vidyasagar. Feedback Systems: Input-Output Properties. Academic Press, 1975.

    Google Scholar 

  5. J.C. Willems. The Analysis of Feedback Systems. MIT Press, 1971.

    Google Scholar 

  6. M. G. Safonov and M. Athans. A multiloop generalization of the circle criterion for stability margin analysis. IEEE Transactions on Automatic Control, 26: 415–422, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  7. J.S. Shamma. The necessity of the small-gain theorem for time-varying and nonlinear systems. IEEE Transactions on Automatic Control, 36: 1138 1147, 1991.

    Google Scholar 

  8. M. Khammash and J. B. Pearson. Performance robustness of discrete-time systems with structured uncertainty. IEEE Transactions on Automatic Control, 36: 398–412, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Megretski. Necessary and sufficient conditions of stability: A multi-loop generalization of the circle criterion. IEEE Transactions on Automatic Control, 38: 753–756, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  10. J.S. Shamma. Robust stability with time varying structured uncertainty. IEEE Transactions on Automatic Control, 39: 714–724, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. C. Doyle, J. E. Wall, and G. Stein. Performance and robustness analysis for structured uncertainty. In Proc. IEEE Conference on Decision and Control, 1982.

    Google Scholar 

  12. J.C. Doyle. Structured uncertainty in control system design. In Proc. IEEE Conference on Decision and Control, 1985.

    Google Scholar 

  13. M. G. Safonov and R.Y. Chiang. Real/complex K m synthesis without curve fitting. In Control and Dynamic Systems; editor C. T. Leondes. Academic Press, 1993.

    Google Scholar 

  14. A. Packard, K. Zhou, P. Pandey, J. Leonhardson, and G. Balas. Optimal, constant I/O similarity scaling for full-information and state-feedback control problems. Systems and Control Letters, 19: 271–280, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Rantzer and A. Megretski. A convex parameterization of robustly stabilizing controllers. IEEE Transactions on Automatic Control, 39: 1802–1808, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. D’Andrea. Generalized £2 synthesis. IEEE Transactions on Automatic Control, 44: 1145–1156, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Zames and J. G. Owen. Duality theory for MIMO robust disturbance rejection. IEEE Transactions on Automatic Control, 38:743–752., 1993.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. G. Owen and G. Zames. Duality theory for robust disturbance attenuation. Automatica, 29: 695–705, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Mesbahi, M.G. Safonov, and G.P. Papavassilopoulos. Bilinearity and complementarity in robust control. In Recent Advances on LMI Methods in Control; editors L. El Ghaoui, S. Niculescu. SIAM, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dullerud, G.E., Paganini, F. (2000). Feedback Control of Uncertain Systems. In: A Course in Robust Control Theory. Texts in Applied Mathematics, vol 36. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3290-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3290-0_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3189-4

  • Online ISBN: 978-1-4757-3290-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics