Skip to main content

Abstract

Silicon (Si) bipolar transistor technology, despite its desirable features of fast switching speed, high transconductance, and excellent current-drive capability at room temperature (RT = 300 K), is often viewed as unsuitable for the cryogenic environment because its current gain (β = Jc/JB), frequency response, and circuit speed typically degrade strongly with cooling [1,2]. Recent evidence [3–6] indicates, however, that careful profile design can be used to achieve respectable Si bipolar performance down to liquid-nitrogen temperature (LNT = 77 K). Even with these improvements, however, it is unlikely that conventionally designed Si bipolar technology will offer performance attractive enough to make it a serious contender to CMOS, a proven technology for cryogenic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kauffman, W. L., and Bergh, A. A., IEEE Trans. on Electron Devices 15 (1968) 732.

    Article  Google Scholar 

  2. Dumke, W. P., IEEE Trans. on Electron Devices 28 (1981) 494.

    Article  Google Scholar 

  3. Woo, J. C. S. et al., IEEE Trans. Electron Devices 35 (1988) 1311.

    Article  Google Scholar 

  4. Stork, J. M. C. et al., IEEE Trans. Electron Devices 36 (1989) 1503.

    Article  Google Scholar 

  5. Yano, K. et al., IEEE Electron Device Letters 10 (1989) 452.

    Article  Google Scholar 

  6. Cressler, J. D. et al., IEEE Trans. on Electron Devices 36 (1989) 1489.

    Article  Google Scholar 

  7. Crabbé, E. F. et al., Tech. Digest of the IEDM (1990) 17.

    Google Scholar 

  8. Cressler, J. D., Proc. of the European Solid State Device Research Conf. (1992) 841.

    Google Scholar 

  9. Cressler, J. D. et al., IEEE Trans. on Electron Devices 40 (1993) 525.

    Article  Google Scholar 

  10. Cressler, J. D. et al., IEEE Trans. on Electron Devices 40 (1993) 542.

    Article  Google Scholar 

  11. Cressler, J. D. et al., Tech. Digest of the Symposium on VLSI Technology (1992) 102.

    Google Scholar 

  12. Cressler, J. D., et al., IEEE Electron Device Letters 15 (1994) 472.

    Article  Google Scholar 

  13. Matthews, J. W. et al., Journal of Crystal Growth 27 (1974) 118.

    Google Scholar 

  14. People, R., IEEE Journal of Quantum Electronics 22 (1986) 1696.

    Article  Google Scholar 

  15. Meyerson, B. S., Proceedings of the IEEE 80 (1992) 1592.

    Article  Google Scholar 

  16. Meyerson, B. S., Applied Physics Letters 48 (1986) 797.

    Article  Google Scholar 

  17. Iyer, S. et al., Tech. Digest of the IEDM (1987) 874.

    Google Scholar 

  18. Patton, G. L., IEEE Electron Device Letters 11 (1990) 171.

    Article  Google Scholar 

  19. Comfort, J. H. et al., in Tech. Digest of the IEDM (1990) 21.

    Google Scholar 

  20. Harame, D. L. et al., Tech. Digest of the IEDM (1992) 19.

    Google Scholar 

  21. Crabbé, E. F. et al., Tech. Digest of the IEDM (1993) 83.

    Google Scholar 

  22. Kasper, E. et al., Tech. Digest of the IEDM (1993) 79.

    Google Scholar 

  23. Cressler, J. D., IEEE Trans. on Microwave Theory and Techniques 46 (1998) 572.

    Article  Google Scholar 

  24. Harame, D. L. et al., IEEE Transactions on Electron Devices 42 (1995) 455.

    Article  Google Scholar 

  25. Harame, D. L. et al., IEEE Transactions on Electron Devices 42 (1995) 469.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cressler, J.D. (2001). Silicon-Germanium Heterojunction Bipolar Transistor. In: Balestra, F., Ghibaudo, G. (eds) Device and Circuit Cryogenic Operation for Low Temperature Electronics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3318-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3318-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4898-4

  • Online ISBN: 978-1-4757-3318-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics