Skip to main content

Evaluation of Penalty Functions for Optimal Control

  • Chapter
Optimization Methods and Applications

Part of the book series: Applied Optimization ((APOP,volume 52))

Abstract

To handle final state equality constraints, two types of penalty functions are evaluated and compared in solving three optimal control problems. Both the absolute value penalty function and the quadratic penalty function with shifting terms yielded the optimal control policy in each case. The quadratic penalty function with shifting terms gave the optimum more accurately, and the approach to the optimum is less oscillatory than with the use of absolute value penalty function. In solving for the optimal control in the third example, the use of the absolute value penalty function required a series of runs to get the performance index to within 0.035% of the optimum. A further advantage in using the quadratic penalty function is obtaining sensitivity information with respect to the final state constraints from the shifting terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bojkov, B. and Luus, R. (1994), Application of iterative dynamic programming to time optimal control, Chem. Eng. Res. Des., Vol. 72, pp. 72–80.

    Google Scholar 

  • Chen, G. and Mills, W. H. (1981), Finite elements and terminal penalization for quadratic cost optimal control problems governed by ordinary differential equations, SIAM J. Control and Optimization, Vol. 19, pp. 744–764.

    Article  MathSciNet  MATH  Google Scholar 

  • Dadebo, S. A. and McAuley, K. B. (1995), Dynamic optimization of constrained chemical engineering problems using dynamic programming, Computers and Chemical Engineering, Vol. 19, pp. 513–525.

    Article  Google Scholar 

  • Edgar, T. F. and Lapidus, L. (1972), The computation of optimal singular bang-bang control II. Nonlinear systems, AIChE Journal, Vol. 18, pp. 780–785.

    Article  Google Scholar 

  • Goh, C. J. and Teo, K.L. (1988), Control parametrization: a unified approach to optimal control problems with generalized constraints, Automatica, Vol. 24, pp. 3–18.

    Article  MathSciNet  MATH  Google Scholar 

  • Hull, T. E., Enright, W. D. and Jackson, K. R. (1976), User Guide to DVERK-a Subroutine for Solving Nonstiff ODE’s. Report 100 (1976); Department of Computer Science, University of Toronto, Canada.

    Google Scholar 

  • Lapidus, L. and Luus, R. (1967), Optimal Control of Engineering Processes, Blaisdell, Waltham, Mass.

    Google Scholar 

  • Luus, R. (1974a), Optimal control by direct search on feedback gain matrix, Chemical Engineering Science, Vol. 29, pp. 1013–1017.

    Article  Google Scholar 

  • Luus, R. (1974b), A practical approach to time-optimal control of nonlinear systems, Industrial and Engineering Chemistry Process Design and Development, Vol. 13, pp. 405–408.

    Article  Google Scholar 

  • Luus, R. (1989), Optimal control by dynamic programming using accessible grid points and region reduction, Hungarian Journal of Industrial Chemistry, Vol. 17, pp. 523–543.

    Google Scholar 

  • Luus, R. (1991), Application of iterative dynamic programming to state constrained optimal control problems, Hungarian Journal of Industrial Chemistry, Vol. 19, pp. 245–254.

    Google Scholar 

  • Luus, R. (1996a), Handling difficult equality constraints in direct search optimization, Hungarian Journal of Industrial Chemistry, Vol. 24, pp. 285–290.

    Google Scholar 

  • Luus, R. (1996b), Use of iterative dynamic programming with variable stage lengths and fixed final time, Hungarian Journal of Industrial Chemistry, Vol. 24, pp. 279–284.

    Google Scholar 

  • Luus, R. (2000), Iterative Dynamic Programming, Chapman &amo; Hall, CRC, London, UK.

    Book  MATH  Google Scholar 

  • Luus, R. and Hennessy, D. (1999), Optimization of fed-batch reactors by the Luus-Jaakola optimization procedure, Ind. Eng. Chem. Res., Vol. 38, pp. 1948–1955.

    Article  Google Scholar 

  • Luus, R. and Jaakola, T. H. I. (1973), Optimization by direct search and systematic reduction of the size of search region, AIChE Journal, Vol. 19, pp. 760–766.

    Article  Google Scholar 

  • Luus, R., Mekarapiruk, W. and Storey, C. (1998), Evaluation of penalty functions for optimal control, in: Proc. of International Conference on Optimization Techniques and Applications (ICOTA ’98), Perth, Western Australia, July 1–3, 1998, Curtin Printing Services, pp. 724–731.

    Google Scholar 

  • Luus, R. and Rosen, O. (1991), Application of dynamic programming to final state constrained optimal control problems, Ind. Eng. Chem. Res., Vol. 30, pp. 1525–1530.

    Article  Google Scholar 

  • Luus, R. and Storey, C. (1997), Optimal control of final state constrained systems, in: Proc. IASTED International Conference on Modelling, Simulation and Control, Singapore, Aug.11–14, 1997, pp. 245–249.

    Google Scholar 

  • Luus, R. and Wyrwicz, R. (1996), Use of penalty functions in direct search optimization, Hungarian Journal of Industrial Chemistry, Vol. 24, pp. 273–278.

    Google Scholar 

  • Mekarapiruk, W. and Luus, R. (1997a), Optimal control of inequality state constrained systems, Ind. Eng. Chem. Res., Vol. 36, pp. 1686–1694.

    Article  Google Scholar 

  • Mekarapiruk, W. and Luus, R. (1997b), Optimal control of final state constrained systems, Canadian Journal of Chemical Engineering, Vol. 75, pp. 806–811.

    Article  Google Scholar 

  • Nishida, N., Liu, Y. A., Lapidus, L. and Hiratsuka, S. (1976), An effective computational algorithm for suboptimal singular and/or bang-bang control, AIChE Journal, Vol. 22, pp. 505–523.

    Article  MathSciNet  Google Scholar 

  • Rosen, O. and Luus, R. (1991), Evaluation of gradients for piecewise constant optimal control, Computers and Chemical Engineering, Vol. 15, pp. 273–281.

    Article  Google Scholar 

  • Sakawa, Y. and Shindo, Y. (1982), Optimal control of container cranes, Automatic, Vol. 18, pp. 257–266.

    Article  MATH  Google Scholar 

  • Teo, K. L., Goh, C. J. and Wong, K. H. (1991), A Unified Computational Approach to Optimal Control Problems, Longman Scientific &amo; Technical, Wiley, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Luus, R., Mekarapiruk, W., Storey, C. (2001). Evaluation of Penalty Functions for Optimal Control. In: Yang, X., Teo, K.L., Caccetta, L. (eds) Optimization Methods and Applications. Applied Optimization, vol 52. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3333-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3333-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4850-2

  • Online ISBN: 978-1-4757-3333-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics