Skip to main content

Computational Methods for the Estimation of the Aerosol Size Distributions

  • Chapter
Mathematical Modeling

Abstract

Aerosol particles play an important role in many physical and chemical processes in the atmosphere1. Physical and chemical behaviour of aerosol particles is strongly dependent on particle size and thus the size cannot be ignored in the evaluation and theoretical prediction of the effects caused by airborne particles. Since the particle diameter d p can range from few nanometers to about 100 micrometers, a size distribution function is used to describe how certain property, e.g. number, surface area or mass, of particles per unit gas volume is distributed on different particle sizes. The determination of the size distribution function is a very important fundamental task in aerosol research. However, the size distribution cannot be measured directly but it has to be reconstructed on the basis of indirect observations using computational methods. From the mathematical point of view the determination of the size distribution function is an ill-posed problem since the problem does not have a unique solution. The purpose of this chapter is to describe the problem and give a brief review on some computational methods proposed for the reconstruction of particle size distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.H. Seinfeld and S.N. Pendis, Atmospheric Physics and Chemistry. From Air Pollution to Climate Change (John Wiley & Sons, 1998).

    Google Scholar 

  2. M. Kandlikar and G. Ramachandran, Inverse methods for analysing aerosol spectrometer measurements: a critical review, J Aerosol Sci. 30, 413–437 (1999).

    Article  Google Scholar 

  3. T.G. Dzubay and H. Hasan, Fitting multimodal lognormal size distributions to cascade impactor data, Aerosol Sci. Tech. 13, 144–150 (1990).

    Article  Google Scholar 

  4. O.G. Raabe, A general method for fitting size distributions to multicomponent aerosol data using weighted least-squares, Env. Sci. Tech. 12, 1162–1167 (1978).

    Article  Google Scholar 

  5. A. Björck, Numerical Methods for Least Squares Problems (SIAM, 1996 ).

    Google Scholar 

  6. U. Amato, D. Di Bello, F. Esposito, C. Serio, G. Pavese, and F. Romano, Intercomparing the Twomey method with a multimodal lognormal approach to retrieve the aerosol size distribution, J. Geophys. Res. D 101, 19267–19275 (1996).

    Article  Google Scholar 

  7. J.K. Wolfenbarger and J.H. Seinfeld, Inversion of aerosol size distribution data, J. Aerosol Sci. 21, 227–247 (1990).

    Article  Google Scholar 

  8. V.S. Bashurova, K.P. Koutzenogil, A.Y. Pusep, and N.V. Shokhirev, Determination of atmospheric aerosol size distribution functions from screen diffusion battery data: mathematical aspects, J. Aerosol Sci. 22, 373–388 (1991).

    Article  Google Scholar 

  9. U. Amato, M.R. Carfora, V. Cuomo, and C. Serio, Objective algorithms for the aerosol problem, Appl. Opt. 34, 5442–5452 (1995).

    Google Scholar 

  10. S. Twomey, Comparison of constrained linear inversion and an iterative nonlinear algorithm applied to the indirect estimation of particle size distributions, J. Comput. Phys. 18, 188–200 (1975).

    Article  Google Scholar 

  11. M.T. Chahine, Determination of the temperature profile in an atmosphere form its outgoing radiance, J. Opt. Soc. Am. 58, 1634–1637 (1968).

    Article  Google Scholar 

  12. G. Ramachandran and M. Kandlikar, Bayesian analysis for inversion of aerosol size distribution data, J. Aerosol Sci. 27, 1099–1112 (1996).

    Article  Google Scholar 

  13. E.F. Maher and N.M. Laird, EM algorithm reconstruction of particle size distributions from diffusion battery data, J. Aerosol Sci. 16, 557–570 (1985).

    Article  Google Scholar 

  14. P. Paatero, The Extreme Value Estimation Deconvolution Method with Applications in Aerosol Research, Technical Report No. HU-P-250, University of Helsinki, Department of Physics (1990).

    Google Scholar 

  15. A.Voutilainen, V. Kolehmainen, and J.P. Kaipio, Statistical inversion of aerosol size measurement data, Inv. Probl. Eng. (2001), in press.

    Google Scholar 

  16. A. Voutilainen, F. Stratmann, and J.P. Kaipio, A non-homogeneous regularization method for the estimation of narrow aerosol size distributions, J. Aerosol Sci. 31, 1433–1445 (2000).

    Article  Google Scholar 

  17. A. Voutilainen and J.P. Kaipio, Estimation of non-stationary aerosol size distributions using the state-space approach, J. Aerosol Sci. (2001), in press.

    Google Scholar 

  18. W. Winklmayr, G.P. Reischl, A.O. Lindner, and A. Berner, A new electromobility spectrometer for the measurement of aerosol size distributions in the size range from 1 to 1000 nm, J. Aerosol Sci. 22, 289–296 (1991).

    Article  Google Scholar 

  19. TSI Inc. (St. Paul, MN, USA, January 10, 2001 ); http://www.tsi.com

  20. A.V. Fiacco and G.P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques (SIAM, 1990 ).

    Chapter  Google Scholar 

  21. W.R. Gilks, S. Rickhardson, and D.J. Spiegelhalter, editors, Markov Chain Monte Carlo in Practice (Chapman & Hall, 1996 ).

    Google Scholar 

  22. C.K. Chui and G. Chen, Kalman Filtering (Springer-Verlag, 1987 ).

    Google Scholar 

  23. B.D.O Anderson and J.B. Moore, Optimal Filtering (Prentice-Hall, 1979 ).

    Google Scholar 

  24. J. Kaipio and E. Somersalo, Nonstationary inverse problems and state estimation, J. Inv. Ill-Posed Problems 7, 273–282 (1999).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Voutilainen, A., Kolehmainen, V., Stratmann, F., Kaipio, J.P. (2001). Computational Methods for the Estimation of the Aerosol Size Distributions. In: Uvarova, L.A., Latyshev, A.V. (eds) Mathematical Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3397-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3397-6_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3371-3

  • Online ISBN: 978-1-4757-3397-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics