Skip to main content

Dopamine-Dependent Long-Term Potentiation Induced by 3-Nitropropionic Acid in Striatal Medium Spiny Neurons

  • Chapter
Catecholamine Research

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 53))

  • 24 Accesses

Abstract

The classical clinical symptoms of Huntington’s disease (HD) include abnormal involuntary movements (chorea) and cognitive impairment. This genetically determined disorder selectively involves degeneration of striatal spiny neurons while sparing striatal large cholinergic interneurons.1 HD is caused by an expansion of CAG repeats near the 5′ end of the IT15 gene. IT15 encodes an ubiquitously expressed protein called huntingtin. Moreover, a remarkable decrease in the activity of mitochondrial complex II (succinate dehydrogenase, SD) has been found in brains of HD patients.2 Indeed, the link between bioenergetic defects and excitotoxic mechanisms, two pathological events which seems to play a major role in HD3,4 to the mutated huntingtin, remains unknown. The corticostriatal projection represents one of the major glutamatergic pathways in the brain and an abnormal release of glutamate from this pathway seems to play a pathogenic role in HD. The complex II inhibitors 3-nitropropionic acid (3-NP) and methylmalonic acid (MMA) mimic the pathology of HD.5,6 Thus, enhanced glutamatergic transmission may trigger neurodegeneration in neurons, the energy metabolism of which is compromised due to impaired SD activity. We studied the electrophysiological effects of the pharmacological blockade of SD by either 3-NP or MMA on glutamatergic excitatory postsynaptic potentials (EPSPs), in order to investigate the link between metabolism impairment and glutamatergic transmission both in striatal spiny neurons and cholinergic interneurons. The t-LTP might play a key role in the regional and cell-type specific neuronal death observed in HD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.J. Ferrante, N.J. Kowall, M.F. Beal, E.P. Richardson, and J.B. Martin, Selective sparing of a class of striatal neurons in Huntington’s disease. Science 320, 561–563. (1985)

    Article  Google Scholar 

  2. M. Gu, M.T. Gash, V.M. Mann, F. Javoy-Agid, J.M. Cooper, and A.H. Schapira, Mitochondrial defect in Huntington’s disease caudate nucleus. Ann. Neurol. 39, 385–389 (1996).

    Article  PubMed  CAS  Google Scholar 

  3. S.E. Browne, A.C. Bowling, U. MacGarvey, M.J. Baik, S.C. Berger, MMK Muqit, E.D. Bird, and M.F. Beal, Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann. Neurol. 41, 646–653 (1997).

    Article  PubMed  CAS  Google Scholar 

  4. J.G. Greene, J.T. Greenamyre, Bioenergetics and glutamate excitotoxicity. Prog. Neurobiol. 48, 613–634 (1996).

    Article  PubMed  CAS  Google Scholar 

  5. U. Wullner, A.B. Young, J.B. Penney, and M.F. Beal, 3-Nitropropionic acid toxicity in the striatum. J. Neurochem. 63, 1772–1781 (1994).

    Article  PubMed  CAS  Google Scholar 

  6. J.G. Greene, R.H. Porter, R.V. Eller, and JT. Greenamyre, Inhibition of succinate dehydrogenase by malonic acid produces an “excitotoxic” lesion in rat striatum. J. Neurochem. 61, 1151–1154 (1993).

    Article  PubMed  CAS  Google Scholar 

  7. P. Calabresi, D. Centonze, P. Gubellini, GA. Marfia, A. Pisani, G. Sancesario, G. Bernardi, Synaptic transmission in the striatum: from plasticity to neurodegeneration. Prog. Neurobiol. 61, 231–265 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. Y. Kawaguchi, C.J. Wilson, S.J. Augood, P.C. Emson, Striatal interneurons: chemical, physiological and morphological characterization. Trends Neurosci. 18, 527–535, (1995).

    Article  PubMed  CAS  Google Scholar 

  9. G. Paxinos, and C. Watson, The rat brain in stereotaxic coordinates. Sydney, Australia: Academic.(1986).

    Google Scholar 

  10. A.N. Murphy, G. Fiskum, and M.F. Beal, Mitochondria in neurodegeneration: bioenergetic function in cell life and death. J. Cereb. Blood Flow Metab. 19, 231–245. (1999).

    Article  PubMed  CAS  Google Scholar 

  11. A. Antonini, K.L. Leenders, and D. Eidelberg, [11C]raclopride-PET studies of the Huntington’s disease rate of progression: relevance of the trinucleotide repeat length. Ann. Neurol. 43, 253–255 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pisani, A. et al. (2002). Dopamine-Dependent Long-Term Potentiation Induced by 3-Nitropropionic Acid in Striatal Medium Spiny Neurons. In: Nagatsu, T., Nabeshima, T., McCarty, R., Goldstein, D.S. (eds) Catecholamine Research. Advances in Behavioral Biology, vol 53. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3538-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3538-3_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3388-1

  • Online ISBN: 978-1-4757-3538-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics