Skip to main content

Combustion Imaging Using Fluorescence and Elastic Scattering

  • Chapter
Optical Metrology for Fluids, Combustion and Solids

Abstract

The reduction of airborne pollutants, particularly greenhouse gases, is a major issue affecting governments around the world. Increasingly stringent international restrictions and regulations target NOx (oxides of nitrogen) reductions, including nitric oxide (NO), the major constituent of NOx. Ground-based power plants, including automobiles, are major producers of NOx in the lowest part of the atmosphere; in the mid-troposphere, airplanes are the major contributors. Many countries now assess landing fees based on the amount of NO, carbon monoxide, unburned hydrocarbons and other pollutants generated by aircraft. There is thus a strong commercial incentive for the aviation industry to produce “cleaner” engines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Lyons and R. Niedzwiecki, “Combustor Technology for Future Small Gas Turbine Aircraft,” NASA TM-106312, August (1993).

    Google Scholar 

  2. P. Glarborg, J.A. Miller, and RJ. Kee, “Kinetic Modeling and Sensitivity Analysis of Nitrogen Oxide Formation in Well-Stirred Reactors,” Combustion and Flame, 65, pp. 177–202 (1986).

    Article  Google Scholar 

  3. K.K. Rink and A.H. Lefebvre, “The Influences of Fuel Composition and Spray Characteristics on Nitric Oxide Formation,” Combustion Science and Technology, 68, pp. 1–14 (1989).

    Article  Google Scholar 

  4. A.G. Gaydon, The Spectroscopy of Flames, 2nd ed., Chapman and Hall, London (1974).

    Book  Google Scholar 

  5. T. Wriedt, “A Review of Elastic Light Scattering Theories,” Part. Part. Syst. Charact., 15, pp. 67–74 (1998).

    Article  Google Scholar 

  6. D. Stepowski, “Laser Measurements of Scalars in Turbulent Diffusion Flames,” Prog. Energy Combust. Sci., 18, pp. 463–491 (1992).

    Article  ADS  Google Scholar 

  7. J. Wolfrum, “Lasers in Combustion: From Basic Theory to Practical Devices,” Twenty-Seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 1–41 (1998).

    Google Scholar 

  8. N.M. Laurendeau, “Temperature Measurements by Light Scattering Methods,” Prog. Energy Combust. Sci., 14, pp. 147–170 (1988).

    Article  Google Scholar 

  9. J. Wormhoudt, M.S. Zahniser, D.D. Nelson, J.B. McManus, R.C. Miake-Lye, and CE. Kolb, “Infrared Tunable Diode Laser Diagnostics for Aircraft Exhaust Emissions Characterization,” in Laser Applications in Combustion and Combustion Diagnostics II, Randy J. Locke, Editor, Proc SPIE 2122, pp. 49–60 (1994).

    Chapter  Google Scholar 

  10. J.W. Daily, “Laser Induced Fluorescence Spectroscopy in Flames,” Prog. Energy Combust. Sci., 23, pp. 133–199 (1997).

    Article  Google Scholar 

  11. RJ. Santoro and CR. Shaddix, “Laser-Induced Incandescence,” in Applied Combustion Diagnostics, Taylor & Francis, New York (2002).

    Google Scholar 

  12. F.-Q. Zhao and H. Hiroyasu, “The Applications of Laser Rayleigh Scattering to Combustion Diagnostics,” Prog. Energy Combust Sei, 19, pp. 447–485 (1993).

    Article  Google Scholar 

  13. S. Lederman, “The Use of Laser Raman Diagnostics in Flow Fields and Combustion,” Prog. Energy Combust. Sci., 3, pp. 1–34 (1977).

    Article  ADS  Google Scholar 

  14. A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed., Gordon and Breach, The Netherlands (1996).

    Google Scholar 

  15. A.G. Gaydon and H.G. Wolfhard, Flames: Their Structure, Radiation and Temperature, 4th ed., Chapman and Hall, London (1978).

    Google Scholar 

  16. J. Kojima, Y. Ikeda, and T. Nakajima, “Spatially Resolved Measurements of OH, CH, and C2 Chemiluminescence in the Reaction Zone of Laminar Methane/Air Premixed Flames,” Twenty-Eighth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 1757–1764 (2000).

    Google Scholar 

  17. B.E. Battles and R.K. Hanson, “Quantitative Fluorescence Measurements of the OH Radical in High Pressure Methane Flames,” AIAA Paper No. 92–2960 (1992).

    Google Scholar 

  18. P.H. Paul, J.A. Gray, J.L. Durant, and J.W. Thomas, “Collisional Quenching Corrections for Laser-Induced Fluorescence Measurements of NO A2S+,” AIAA Journal, 32, No. 8, pp. 1670–1675 (1994).

    Article  ADS  Google Scholar 

  19. P. Andresen, G. Meijer, H. Schulter, H. Voges, A. Kock, W. Hentschel, W. Oppermann, and E. Rothe, “Fluorescence imaging Inside an Internal Combustion Engine Using Tunable Excimer Lasers,” Applied Optics, 29, No. 16, pp. 2392–2404 (1990).

    Article  ADS  Google Scholar 

  20. R.P. Lucht, D.W. Sweeney, and N.M. Laurendeau, “Laser-Saturated Measurements of OH Concentration in Flames,” Combustion and Flame, 50: 189–205 (1983).

    Article  Google Scholar 

  21. R.V. Ravikrishna and N.M. Laurendeau, “Laser-Saturated Fluorescence Measurement of Nitric Oxide in Laminar Counterflow Diffusion Flames,” Combustion and Flame, 113, pp. 473–475 (1998).

    Article  Google Scholar 

  22. A. Brockhinke and M.A. Linne, “Short-Pulse Techniques: Picosecond Fluorescence, Energy Transfer, and ‘Quench-Free’ Measurements,” in Applied Combustion Diagnostics, K. Kphse-Höinghaus, and J.B. Jeffries, Eds., Taylor and Francis, New York, pp. 128–154 (2002).

    Google Scholar 

  23. D.G. Jones and J.C. Mackie “Evaluation of C2 Resonance Fluorescence as a Technique for Transient Flame Studies,” Combustion and Flame, 27, pp. 143–146 (1976).

    Article  Google Scholar 

  24. P.A. Bonczyk and J.A. Shirley, “Measurement of CH and CN Concentration in Flames by Laser-Induced Saturated Fluorescence,” Combustion and Flame, 34, pp. 253–264 , (1979).

    Article  Google Scholar 

  25. M.B. Long, B.F. Webber, and R.K. Chang, “Instantaneous Two-Dimensional Concentration Measurements in a Jet Flow by Mie Scattering,” Appl. Phys. Lett., 34, pp. 22–24 (1979).

    Article  ADS  Google Scholar 

  26. M.J. Dyer and D.R. Crosley, “ Two Dimensional Imaging of OH Laser-Induced Fluorescence in a Flame,” Optics Letters, 1, No. 8, pp. 382–384 (1982).

    Article  ADS  Google Scholar 

  27. G. Kychakoff, K. Knapp, R.D. Howe, and R.K. Hanson, “Flow Visualization in Combustion Gases Using Nitric Oxide Fluorescence,” AIAA Journal, 22, No.1, pp. 153–154 (1984).

    Article  ADS  Google Scholar 

  28. R.K. Hanson, “Combustion Diagnostics: Planar Imaging Techniques,” Proceedings of the Twenty-First Symposium (International) on Combustion, The Combustion Institute, pp. 1677–1691 (1986).

    Google Scholar 

  29. M.G. Allen, K.R. McManus, and D.M. Sonnenfroh, “PLIF Imaging in Spray Flame Combustors at Elevated Pressure,” AIAA Paper No. 95–0172 (1995).

    Google Scholar 

  30. H. Becker, A. Arnold, R. Suntz, P. Monkhouse, J. Wolfrum, R. Maly, and W. Pfister, “Investigation of Flame-Structure and Burning Behavior in an IC Engine Simulator by 2-D-LIF of OH Radicals,” Applied Physics B, 50, pp. 473–478 (1990).

    Article  Google Scholar 

  31. A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schaffer, V. Sick, J. Wolfrum, H. Hentschel, and K.-P. Schindler, “DI Diesel Engine Combustion Visualized by Combined Laser Techniques in Flames,” Twenty-Fourth Symposium (International) on Combustion, The Combustion Institute, pp. 1677–1691 (1992).

    Google Scholar 

  32. R.J. Locke, Y.R. Hicks, and R. K. Hanson, “AST Combustion Workshop: Diagnostics Working Group Report”, NASA TM-107354, August (1994).

    Google Scholar 

  33. Y.R. Hicks, R.J. Locke, R.C. Anderson, M. Zaller, and H.J. Schock, “Imaging Fluorescent Combustion Species in Gas Turbine Flame Tubes: On Complexities in Real Systems,” AIAA Paper No. 97–2837 (1997).

    Google Scholar 

  34. R.J. Locke, M.M. Zaller, Y.R. Hicks, and R.C. Anderson, “Non Intrusive Laser-Induced Imaging for Speciation and Patternation in High Pressure Gas Turbine Combustors,” NASA TM-1999–209395, September (1999).

    Google Scholar 

  35. A.H. Lefebvre, Gas Turbine Combustion, Hemisphere Publishing Corporation, New York (1983).

    Google Scholar 

  36. R. Tacina, C. Wey, P. Laing, and A. Mansour, “A Low NOx Lean-Direct Injection, Multipoint Integrated Module Combustor Concept for Advanced Aircraft Gas Turbines,” NASA TM-2002–211347 (2002).

    Google Scholar 

  37. L.A. Melton, “Applications of Laser-Induced Exciplex Fluorescence to Single Droplet and Fuel Spray Vaporization,” U.S. Army Research Office Final Report, DAAL03–87-K-0120(1991).

    Google Scholar 

  38. Y.R. Hicks, R.J. Locke, M.M. Zaller, R.C. Anderson, and K.A. Ockunzzi, “Combining Planar Mie Scattering and Fluorescence Imaging Techniques to Analyze Fuel Injection and Combustion Performance in Aviation Gas Turbine Combustors,” VSJ-SPIE98 Paper No.AB081(1998).

    Google Scholar 

  39. M.C. Jerny and D.A. Greenhalgh, “Planar Dropsizing by Elastic and Fluorescence Scattering in Sprays Too Dense for Phase Doppler Measurement,” Appl. Phys. B, 71, pp. 703–710 (2000).

    Article  ADS  Google Scholar 

  40. V. Lyons, “Fuel/Air Nonuniformity-Effect on Nitric Oxide Emissions,” AIAA Journal, 20, No. 5, pp. 660–665 (1985).

    Article  ADS  Google Scholar 

  41. R. Mongia, E. Tomita, F. Hsu, L. Talbot, and R. Dibble, “Optical Probe for In-Situ Measurements of Air-to-Fuel Ratio in Low Emission Engines,” AIAA Paper No. 96–0174 (1996).

    Google Scholar 

  42. J. Lee and D. Santavicca, “Fiber-Optic Probe for Laser-Induced Fluorescence Measurements of the Fuel-Air Distribution in Gas Turbine Combustors,” AIAA Journal, 13, No.3, pp. 384–387 (1997).

    Google Scholar 

  43. J.M. Donbar, J.F. Driscoll, and CD. Carter, “Reaction Zone Structure in Turbulent Nonpremixed Jet Flames—From CH-OH PLIF Images,” Combustion and Flame, 122, pp. 1–19 (2000).

    Article  Google Scholar 

  44. R.J. Locke, Y.R. Hicks, R.C. Anderson, and W.A. de Groot, “Non-Intrusive Laser-Based Imaging of Jet-A Fuel Injection and Combustion Species in High Pressure, Subsonic Flows,” JANNAF Paper No. APS-037 (2000).

    Google Scholar 

  45. Y.R. Hicks, R.J. Locke, and R.C. Anderson, “Optical Measurement and Visualization in High-Pressure, High-Temperature, Aviation Gas Turbine Combustors”, in Optical Diagnostics for Industrial Applications, Neil A. Halliwell, Ed., Proceedings of SP IE, Vol. 4076, pp. 66–77 (2000).

    Chapter  Google Scholar 

  46. R.J. Locke, Y.R. Hicks, R.C. Anderson, and W.A. De Groot, “Spontaneous Raman Scattering: From Atmospheric CH4/Air Diffusion Flame to 55 Bar Jet-A-Fueled, Aviation Gas Turbine Combustor,” NASA TM-2002–211869, September (2002).

    Google Scholar 

  47. Y.R. Hicks, W.A. DeGroot, R.J. Locke, and R.C. Anderson, “Combustion Temperature Measurement by Spontaneous Raman Scattering in a Jet-A Fueled Gas Turbine Combustor Sector,” NASA TM-2002–211588, May (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Locke, R.J., Hicks, Y.R., Anderson, R.C. (2003). Combustion Imaging Using Fluorescence and Elastic Scattering. In: Mercer, C.R. (eds) Optical Metrology for Fluids, Combustion and Solids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3777-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3777-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5346-9

  • Online ISBN: 978-1-4757-3777-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics