Skip to main content

R-Curve Effect on Slow Crack Growth and Thermal Shock of Ceramics

  • Chapter
Fracture Mechanics of Ceramics

Abstract

In polycristalline ceramics, the R-Curve effect plays a significant role on the crack propagation. For macrocracks, a decrease of velocity is observed as a function of the applied stress intensity factor due to a crack resistance increase with crack extension. This is due to a shielding of the stress intensity factor near the crack tip caused by transformation toughening or bridging. A shift of the crack velocity — stress intensity factor curve towards higher values of KI can be observed. If the R-Curve effect is substracted from experimental results, an unique crack rate-stress intensity factor at the crack tip curve is obtained.

The crack propagation behaviour under cyclic loading is also influenced by the R-Curve. The crack velocities under alternative stresses are increased. The analysis of fatigue shows that two mechanisms intervene: stress corrosion and pure cyclic mechanisms. The increase of crack rates under cyclic loading is due to a reduction of toughening mechanisms.

Thermal shock behaviour of ceramics can be analysed by a fracture mechanics approach. Materials exhibiting R-Curve behaviour present three crack propagation stages: stable, unstable and again stable propagation. With a strong R-Curve effect, unstable propagation can be avoided so that the retained strength can be enhanced. The R-Curve concept is required to explain the thermal-shock behaviour of ceramics and leads to a good prediction when R-Curves are measured at the temperature of thermal shock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.W. Steinbrech, in: Fracture Mechanics of Ceramics, Vol. 9, Bradt et al., ed., Plenum Press, 187 (1992).

    Google Scholar 

  2. A.G. Evans, J. Am. Ceram-Soc., 73, 187 (1990).

    Article  CAS  Google Scholar 

  3. G. Fantozzi and C. Olagnon, Materials Science and Technology, Vol. 13, Structure and Properties of Composites, Tsu-Wei Chou, ed., VCH 183 (1993).

    Google Scholar 

  4. B. Lawn, Fracture of Brittle Solids, Cambridge, University Press (1993).

    Google Scholar 

  5. T. Fett and D. Munz, in: Fracture Mechanics of Ceramics, Vol. 9, Bradt et al., ed., Plenum Press, 219 (1992).

    Google Scholar 

  6. T. Fett and D. Munz, J Am. Ceram. Soc., 75, 958 (1992).

    Article  CAS  Google Scholar 

  7. A. Okada, N. Hirosaki and M. Yoshimura, J. Am. Ceram. Soc., 73, 2095 (1990).

    Article  CAS  Google Scholar 

  8. M.E. Ebrahimi, J. Chevalier, M. Saadaoui and G. Fantozzi, this proceedings volume.

    Google Scholar 

  9. F. Mignard, Ph. D. Thesis, INSA Lyon (1994).

    Google Scholar 

  10. A.G. Evans and E.R. Fuller, Metall. Trans., 5, 27 (1974).

    Google Scholar 

  11. R.H. Dauskardt and R.O. Ritchie, J Am. Ceram. Soc., 70, 248 (1987).

    Article  Google Scholar 

  12. R.H. Dauskardt, D.B. Marshall and R.O. Ritchie, J Am Ceam. Soc., 73, 893 (1990).

    Article  CAS  Google Scholar 

  13. J.F. Tsai, C. Yu and D. Shetty, J Am. Ceram. Soc., 73, 2992 (1990).

    Article  CAS  Google Scholar 

  14. G. Grathwohl and T. Liu, J Am. Ceram. Soc., 74, 3028 (1991).

    Article  CAS  Google Scholar 

  15. G. Grathwohl and T. Liu, J. Am. Ceram. Soc., 74, 318 (1991).

    Article  CAS  Google Scholar 

  16. S.Y. Liu and I.W. Chen, J Am. Ceram. Soc., 74, 1197 (1991).

    Article  CAS  Google Scholar 

  17. S.Y. Liu and I.W. Chen, J Am. Ceram. Soc., 74, 1206 (1991).

    Article  CAS  Google Scholar 

  18. T. Kawakubo and K. Komeya, J Am. Ceram. Soc., 70, 400 (1987).

    Article  CAS  Google Scholar 

  19. F. Guiu, M.J. Reece and D.A. Vaughan, J Mat. Sci., 26, 3275 (1991).

    Article  CAS  Google Scholar 

  20. T. Fett and D. Munz, J. Mat. Sci. Let., 12, 352 (1993).

    Article  CAS  Google Scholar 

  21. H. Kishimoto, A. Ueno, S. Okawara and H. Kawamoto, J Am. Ceram. Soc., 77, 1324 (1994).

    Article  CAS  Google Scholar 

  22. S. Lathabai, J. Rödel and B.R. Lawn, J Am. Ceram. Soc., 74, 1340 (1991).

    Article  CAS  Google Scholar 

  23. Y.M. Mai, X. Hu, K. Duan and B. Cotterell, in: Fracture Mechnics of Ceramics, Vol. 9, Bradt et al., ed., Plenum Press, 387 (1992).

    Google Scholar 

  24. J. Chevalier, C. Olagnon and G. Fantozzi, J. Am. Ceram. Soc., to be published.

    Google Scholar 

  25. D.S. Jacobs and I.W. Chen, J. Am. Ceram. Soc., 78, 513 (1995).

    Article  CAS  Google Scholar 

  26. T. Fett and D. Munz, J. Mat. Sci. Let., 17, 307 (1998).

    Article  CAS  Google Scholar 

  27. J.F. Tsai, J.D. Belnap and D.K. Shetty, J Am. Ceram. Soc., 77, 105 (1994).

    Article  CAS  Google Scholar 

  28. D.P.H. Hasselman, J Am. Ceram. Soc., 52, 600 (1969)

    Article  CAS  Google Scholar 

  29. D.P.H. Hasselman, J Am. Ceram. Soc., 53, 490 (1969).

    Article  Google Scholar 

  30. M. Saadaoui and G. Fantozzi, Mat. Sci. Eng., A247, 142 (1998).

    Article  Google Scholar 

  31. E.H. Lutz and M.V. Swain, J Am. Ceram. Soc., 74, 2859 (1991).

    Article  CAS  Google Scholar 

  32. M.V. Swain, J. Am. Ceram. Soc., 73, 621 (1990).

    Article  CAS  Google Scholar 

  33. M.K. Banniste and M.V. Swain, Ceram. Int. 16, 77 (1990).

    Article  Google Scholar 

  34. P.F. Becher, J Am. Ceram. Soc., 64, 37 (1981).

    Article  CAS  Google Scholar 

  35. N. Claussen and D.P.H. Hasselman, Thermal Stresses in Severe Environments, Hasselman and Heller, ed., Plenum Press, 381 (1980).

    Google Scholar 

  36. M. Saadaoui, J. Chevalier and G. Fantozzi, this proceedings volume.

    Google Scholar 

  37. M.J. Hoffmann, G.A. Schneider and G. Petzow, Thermal Shock and Thermal Fatigue Behaviour of Advanced Ceramics, Schneider and Petzow, ed., Kluwer, 79 (1993).

    Google Scholar 

  38. J. Chevalier et al., this proceedings volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fantozzi, G., Chevalier, J., Saâdaoui, M. (2002). R-Curve Effect on Slow Crack Growth and Thermal Shock of Ceramics. In: Bradt, R.C., Munz, D., Sakai, M., Shevchenko, V.Y., White, K. (eds) Fracture Mechanics of Ceramics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4019-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4019-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3370-6

  • Online ISBN: 978-1-4757-4019-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics