Skip to main content

Actomyosin-Like Protein in Brain

  • Chapter
Advances in Neurochemistry

Abstract

Two general categories of ATPases are present in tissue. One group requires Na+ and K+ as well as Mg2+ for maximum enzyme activity and functions in active transport of Na + , K + , and other substances across cell membranes. The second group of ATPases requires Mg2+ or Ca2+ for activation. The biochemical and physiological significances of the Mg2+-Ca2 +-activated enzyme systems are less understood. The one major protein system activated by Mg2+ or Ca2+ which has received extensive study is the actomyosin complex; in this system the hydrolysis of ATP stimulated by divalent cations plays an essential role in muscle contraction and relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Latif, A. A., 1966, A simple method for isolation of nerve-ending particles from rat brain, Biochim. Biophys. Acta 121: 403–406.

    PubMed  CAS  Google Scholar 

  • Adelman, M. R., and Taylor, E. W., 1969a, Isolation of an actomyosin-like protein complex from slime mold Plasmodium and the separation of the complex into actin- and myosin- like fractions, Biochemistry 8: 4964–4975.

    PubMed  CAS  Google Scholar 

  • Adelman, M. R., and Taylor, E. W., 1969b, Further purification and characterization of slime mold myosin and slime mold actin, Biochemistry 8: 4976–4988.

    PubMed  CAS  Google Scholar 

  • Aldridge, D. C, Armstrong, J. J., Speake, R. N., and Turner, W. B., 1967, The structure of cytochalasins A and B, J. Chem. Soc. 1967(C): 1667–1676.

    Google Scholar 

  • Arcos, J. C, Stacey, R. E., Mathison, J. B., and Argus, M. F., 1967, Kinetic parameters of mitochondria swelling, Exp. Cell Research 48: 448–460.

    CAS  Google Scholar 

  • Asatoor, A. M., and Armstrong, M. D., 1967, 3-methylhistidine, a component of actin, Biochem. Biophys. Res. Comm. 26: 168–174.

    PubMed  CAS  Google Scholar 

  • Bárány, M., and Jaisle, F., 1960, Kontraktioniszklus und interaktion zwischen aktin und l- myosin unter der Wirkung spezifische interaktions—inhibitoren, Biochim. Biophys. Acta 41: 192–203.

    PubMed  Google Scholar 

  • Bárány, M., Bárány, K., Gaetjens, E., and Bailin, G., 1966, Chicken gizzard myosin, Arch. Biochem. Biophys. 113: 205–221.

    PubMed  Google Scholar 

  • Bárány, M., Nagy, B., Finkelman, F., and Chrambach, A., 1961, Studies on the removal of the bound nucleotide of actin, J. Biol. Chem. 236: 2917–2925.

    PubMed  Google Scholar 

  • Benitez, H. H., Murray, M. R., and Wooley, D. W., 1955, Effects of serotonin and certain of its antagonists upon oligodendroglial cells in vitro, Proceedings Second International Congress Neuropathology, Pt II, 423–428, Exerpta Medica Foundation.

    Google Scholar 

  • Bed, S., and Puszkin, S., 1970, Mg2+-Ca2 +-activated adenosine triphosphatase system isolated from mammalian brain, Biochemistry 9: 2058–2067.

    Google Scholar 

  • Berl, S., Puszkin, S., and Nicklas, W. J., 1973, Actomyosin-like protein in brain, Science 179: 441–446.

    PubMed  CAS  Google Scholar 

  • Bettex-Galland, M., and Luscher, E. F., 1960, Thrombosthenin, the contractile protein from blood platelets and its relation to other contractile proteins, Adv. Protein Chem. 20: 1–35.

    Google Scholar 

  • Boullin, D. J., 1967, The action of extracellular cations on the release of the sympathetic transmitter from peripheral nerves, J. Physiol. (London) 189: 85–99.

    CAS  Google Scholar 

  • Bowler, K., and Duncan, C, 1967, Studies on the actomyosinlike membranes preparation from crayfish nerve cord, Comp. Biochem. Physiol. 20: 543–551.

    PubMed  CAS  Google Scholar 

  • Bowler, K., and Duncan, C, 1968, The temperature characteristics of the ATPases from a frog brain microsomal preparation, Comp. Biochem. Physiol. 24: 223–227.

    PubMed  CAS  Google Scholar 

  • Bray, D., 1973, Model for membrane movements in the neural growth cone, Nature 244: 93–96.

    PubMed  CAS  Google Scholar 

  • Carsten, M. E., 1971, Uterine smooth muscle : Troponin, Arch. Biochem. Biophys. 147: 353–357.

    PubMed  CAS  Google Scholar 

  • Carsten, M. E., and Mommaerts, W. F. H. M., 1963, A study of actin by means of starch gel electrophoresis, Biochemistry 2: 28–32.

    PubMed  CAS  Google Scholar 

  • Chang, C-M., and Goldman, R. D., 1973, The localization of actinlike fibers in cultured neuroblastoma cells as revealed by heavy meromyosin binding, J. Cell Biol. 57: 867–874.

    PubMed  CAS  Google Scholar 

  • Clark, J. B., and Nicklas, W. J., 1970, The preparation of rat brain mitochondria. Preparation and characterization, J. Biol. Chem. 245: 4724–4731.

    PubMed  CAS  Google Scholar 

  • Clark, A. W., Hurlbut, W. P., and Mauro, A., 1972, Changes in the fine structure of the neuromuscular junction of the frog caused by black widow spider venom, J. Cell. Biol. 52: 1–14.

    PubMed  CAS  Google Scholar 

  • Cohen, I., and Cohen, C. J., 1972, A tropomyosinlike protein from human platelets, J. Mol. Biol. 68: 383–387.

    PubMed  CAS  Google Scholar 

  • Conover, T. E., and Bârâny, M., 1966, The absence of a myosin-like protein in liver mitochondria, Biochim. Biophys. Acta 127: 235–238.

    PubMed  CAS  Google Scholar 

  • De Robertis, E., Alberici, M., Rodriguez De Lores Arnaiz, G., and Azcurra, J. M., 1966, Isolation of different types of synaptic membranes from the brain cortex, Life Sci. 5: 577–582.

    PubMed  Google Scholar 

  • Douglas, W. W., 1965, Calcium dependent links in stimulus-secretion coupling in the adrenal medulla and neurohypophysis, Int. Wenner-Gren Symposium, Stockholm, pp. 267–290, Pergamon Press, London.

    Google Scholar 

  • Douglas, W. W., 1968, The First Gaddum Memorial Lecture. Stimulus-secretion coupling. The concept and clues from chromaffin and other cells, Brit. J. Pharmacol. 34: 451–474.

    CAS  Google Scholar 

  • Douglass, W. W., and Sorimachi, M., 1972, Affects of cytochalasin B and colchicine on secretion of posterior pituitary and adrenal medullary hormones, Brit. J. Pharmacol. 45: 143–144P.

    Google Scholar 

  • Elzinga, M., 1970, Amino acid sequence studies on rabbit skeletal muscle actin. Cyanogen bromide cleavage of the protein and determination of the sequence of seven of the resulting peptides, Biochemistry 9: 1365–1374.

    PubMed  CAS  Google Scholar 

  • Filo, R. S., Ruegg, J. C, and Bohr, D. F., 1963, Actomyosin-like protein of arterial wall, Amer. J. Physiol. 205: 1247–1252.

    PubMed  CAS  Google Scholar 

  • Fine, R. E., and Bray, D., 1971, Actin in growing nerve cells, Nature New Biol. 234: 115–118.

    PubMed  CAS  Google Scholar 

  • Fine, R. E., Blitz, A. L., Hitchcock, S. E., and Kaminer, B., 1973, Tropomyosin in brain and growing neurones, Nature New Biol. 245: 182–186.

    PubMed  CAS  Google Scholar 

  • Gergely, J., 1964, in Biochemistry of Muscle Contraction (J. Gergely, ed.), p. 119, Little, Brown and Co., Boston, Mass.

    Google Scholar 

  • Germain, M., and Proulx, P., 1965, Adenosine triphosphatase activity in synaptic vesicles of rat brain, Biochem. Pharm. 14: 1815–1819.

    PubMed  CAS  Google Scholar 

  • Hanson, J. P., Repke, D. I., Katz, A. M., and Aledort, L. M., 1972, A troponin-tropomyosin- like Ca++-sensitizing system in human platelets, Int. Soc. Thrombosis and Haemostasis. Illrd Congress, Washington, D.C. (Abstracts), p. 200.

    Google Scholar 

  • Hartshorne, D. J., and Mueller, H., 1967, Separation and recombination of the ethylene glycol bis (β-aminoethyl ether)-N, N 1-tetraacetic acid-sensitizing factor obtained from a low ionic strength extract of natural actomyosin, J. Biol. Chem. 242: 3089–3092.

    PubMed  CAS  Google Scholar 

  • Hess, H.H., and Pope, A., 1959, Intralaminar distribution of adenosine triphosphatase activity in rat cerebral cortex, J. Neurochem., 3: 287–299.

    PubMed  CAS  Google Scholar 

  • Hess, H.H., and Pope, A., 1961, Intralaminar distribution of adenosine triphosphatase activity in human frontal isocortex, J. Neurochem.,8: 299–309.

    PubMed  CAS  Google Scholar 

  • Hoffman-Berling, H., 1956, Das kontraktile eiweiss undifferenzierter zellen, Biochim. Biophys. Acta 19: 453–463.

    Google Scholar 

  • Hosie, R. J., 1965, The localization of adenosine triphosphatase in morphologically characterized subcellular fractions of guinea-pig brain, Biochem. J. 96: 404–412.

    PubMed  CAS  Google Scholar 

  • Ishikawa, H., Bischoff, R., and Holtzer, H., 1969, Formation of arrowhead complexes with heavy meromyosin in a variety of cell types, J. Cell. Biol. 43: 312–328.

    PubMed  CAS  Google Scholar 

  • Johnson, P., and Perry, S. V., 1970, Biological activity and 3-methylhistidine content of actin and myosin, Biochem. J. 119: 293–298.

    PubMed  CAS  Google Scholar 

  • Kadota, K., Mori, S., and Imaizumi, R., 1967, The properties of ATPase of synaptic vesicle fraction, J. Biochem. 61: 424–432.

    PubMed  CAS  Google Scholar 

  • Kaminer, B., and Szonyi, E., 1972, Tropomyosin in electric organ of eel and torpedo, J. Cell Biol. 55: 129a.

    Google Scholar 

  • Katz, B., and Miledi, R., 1967a, The timing of calcium action during neuromuscular transmission, J. Physiol. (London) 189: 535–544.

    CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1967b, The release of acetylcholine from nerve endings by graded electric pulses, Proc. Roy. Soc. B167: 23–38.

    CAS  Google Scholar 

  • Kendrick-Jones, J., Lehman, W., and Szent-Gyorgyi, A. G., 1970, Regulation in molluscan muscles, J. Mol. Biol. 54: 313–326.

    PubMed  CAS  Google Scholar 

  • Kirpekar, S. M., and Misu, Y., 1967, Release of noradrenaline by splenic nerve stimulation and its dependence on calcium, J. Physiol. (London) 189: 219–234.

    Google Scholar 

  • Kuehl, W. M., and Gergely, J., 1969, The kinetics of exchange of adenosine triphosphate and calcium with G-Actin, J. Biol. Chem. 244: 4720–4729.

    PubMed  CAS  Google Scholar 

  • Lewin, E., and Hess, H. H., 1964, Intralaminar distribution of Na-K ATPase in rat cortex, J. Neurochem. 11: 473–481.

    PubMed  CAS  Google Scholar 

  • Libet, B., 1948, Adenosinetriphosphatase (ATPase) in nerve, Fed. Proc. 7: 72.

    PubMed  CAS  Google Scholar 

  • Lin, S., Santi, D. V., and Spudich, J. A., 1974, Biochemical studies on the mode of action of cytochalasin B, J. Biol. Chem. 249: 2268–2274.

    PubMed  CAS  Google Scholar 

  • Mahendran, C., Nicklas, W. J., and Berl, S., 1974, Evidence for calcium-sensitive component in brain actomyosin-like protein (neurostenin), J. Neurochem. 23: 497–501.

    PubMed  CAS  Google Scholar 

  • Malaisse, W. J., Malaisse-Lagae, F., Walker, M. O., and Lacy, P. E., 1971, The stimulussecretion coupling of glucose-induced insulin release, Diabetes 20: 257–265.

    PubMed  CAS  Google Scholar 

  • Manasek, F. J., Burnside, B., Stroman, J., 1972, The sensitivity of developing cardiac myofibrils to cytochalasin B, Proc. Nat. Acad. Sci. (U.S.) 69: 302–312.

    Google Scholar 

  • Martonosi, A., and Gouvea, M. A., 1961, Studies on actin. VI. The interaction of nucleoside triphosphates with actin, J. Biol. Chem. 236: 1345–1352.

    PubMed  CAS  Google Scholar 

  • Martonosi, A., Gouvea, M. A., and Gergely, J., 1960, Studies on actin. I. The interaction of [C14]-labeled adenosine nucleotide with actin, J. Biol. Chem. 235: 1700–1706.

    PubMed  CAS  Google Scholar 

  • Naidoo, D., and Pratt, O. E., 1956, The effect of magnesium and calcium ions on adenosine triphosphatase in the nervous and vascular tissues of the brain, Biochem. J. 62: 465–469.

    PubMed  CAS  Google Scholar 

  • Needham, D., 1960, in Structure and Function of Muscle (G. H. Bourne, ed.), Vol. 2, p. 72, Academic Press, New York.

    Google Scholar 

  • Needham, D., and Williams, J. M., 1963, Proteins of the uterine contractile mechanism, Biochem. 7.89: 552–560.

    Google Scholar 

  • Neifakh, S. A., and Kazakova, T. B., 1963, Actomyosin-like protein in mitochondria of the mouse liver, Nature 197: 1106–1107.

    PubMed  CAS  Google Scholar 

  • Nicklas, W. J., and Bed, S., 1974, Effects of cytochalasin B on uptake and release of putative transmitters by synaptosomes and on brain actomyosin-like protein, Nature 247: 471–473.

    PubMed  CAS  Google Scholar 

  • Nicklas, W. J., Puszkin, S., and Bed, S., 1973, Effect of vinblastine and colchicine on uptake and release of putative transmitters by synaptosomes and on brain actomyosinlike protein, J. Neurochem. 20: 109–121.

    PubMed  CAS  Google Scholar 

  • Novakoff, A. B., 1967, Enzyme localization and ultrastructure of neurones, in The Neurone (H. Hyden, ed.), pp. 255–318, Elsevier, Amsterdam.

    Google Scholar 

  • Ohnishi, T., and Ohnishi, T., 1962, Extraction of contractile protein from liver mitochondria, J. Biochem. (Tokyo) 51: 380–381.

    CAS  Google Scholar 

  • Perry, S. V., and Grey, T. C, 1956, A study of the effects of substrate concentration and certain relaxing factors on the magnesium-activated myofibrillar adenosine triphosphatase, Biochem. 7.64: 184–192.

    Google Scholar 

  • Poglazov, B. F., 1966, Structure and Functions of Contractile Proteins (Poglazov, B. F., ed.), p. 69, Academic Press, New York.

    Google Scholar 

  • Poisner, A. M., and Bernstein, J., 1971, A possible role of microtubules in catecholamine release from the adrenal medulla: Effect of colchicine, vinca alkaloids and deuterium oxide, J. Pharm. Exptl. Ther. 177: 102–108.

    CAS  Google Scholar 

  • Pollard, T. D., and Korn, E., 1972, The “contractile” proteins of Acanthamoeba castellanii, in Cold Spring Harbor Symposia on Quantitative Biology, Vol. XXXVII, pp. 573–583.

    Google Scholar 

  • Pollard, T. D., and Weihing, R. R., 1974, Actin and myosin and cell movement, CRC Critical Reviews in Biochemistry, January, 1–65.

    Google Scholar 

  • Pomerat, C. M., Handelman, W. J., and Raiborn, C. W., Jr., 1967, Dynamic activities of nervous tissue in vitro, in The Neurone (H. Hyden, ed.), pp. 119–178, Elsevier, Amsterdam.

    Google Scholar 

  • Portzehl, H., Schramm, G., and Weber, H.H., 1950, Aktomyosin und seine komponenten, I. Mitt., Z. Naturforsch. 5B: 61–74.

    Google Scholar 

  • Puszkin, S., and Bed, S., 1972, Actomyosin-like protein from brain: Separation and characterization of the actin-like component, Biochim. Biophys. Acta 256: 695–709.

    PubMed  CAS  Google Scholar 

  • Puszkin, S., Bed, S., Puszkin, E., and Clarke, D. C, 1968, Actomyosin-like protein isolated from mammalian brain, Science 161: 170–171.

    PubMed  CAS  Google Scholar 

  • Puszkin, S., Nicklas, W. J., and Bed, S., 1972, Actomyosin-like protein in brain: Subcellular distribution, J. Neurochem. 19: 1319–1333.

    PubMed  CAS  Google Scholar 

  • Puszkin, E., Puszkin, S., Lo, L. W., and Tanenbaum, S. W., 1973, Binding of cytochalasin D to platelet and muscle myosin, J. Biol. Chem. 248: 7754–7761.

    PubMed  CAS  Google Scholar 

  • Rees, M. K., and Young, M., 1967, Studies on the isolation and molecular properties of homogeneous globular actin, J. Biol. Chem. 242: 4449–4458.

    PubMed  CAS  Google Scholar 

  • Richards, E. G., Chung, C. S., Menzel, D. B., and Olcott, H. S., 1967, Chromatography of myosin on diethylaminoethylsephadex A-50, Biochemistry 6: 528–540.

    PubMed  CAS  Google Scholar 

  • Schmitt, F. O., 1968, The molecular biology of neuronal fibrous proteins, Neurosciences Res. Prog. Bull., Vol. 6, No. 2, pp. 119–144.

    Google Scholar 

  • Schofield, J. G., 1971, Cytochalasin B and release of growth hormone, Nature New Biol. 234: 215–216.

    PubMed  CAS  Google Scholar 

  • Shibata, N., Tatsumi, N., Tanaka, K., Okamura, Y., and Senda, N., 1972, A contractile protein possessing Ca2 +-sensitivity (natural actomyosin) from leucocytes, Biochim. Biophys. Acta 256: 565–576.

    PubMed  CAS  Google Scholar 

  • Smith, A. D., DePotter, W. P., Moerman, E. J., and De Schaedryver, A. F., 1970, Release of dopamine β-hydroxylase and chromogranin A upon stimulation of the splenic nerve, Tissue Cell 2: 547–568.

    PubMed  CAS  Google Scholar 

  • Sorimachi, M., Oesch, F., and Thoenen, H., 1973, Effects of colchicine and cytochalasin B on the release of 3H-norepinephrine from guinea-pig atria evoked by high potassium, nicotine and tyramine, Naunyn-Schmiederberg’s Arch. Pharmacol. 276: 1–12.

    CAS  Google Scholar 

  • Speidel, C. C, 1935, Studies of living nerves; phenomena of nerve irritation and recovery, degeneration and repair, J. Comp. Neurol. 61: 1–80.

    Google Scholar 

  • Spudich, J. A., 1972, Effects of cytochalasin B on actin filaments, Cold Spring Harbor Symposium on Quantitative Biology, Vol. XXXVII, pp. 585–593.

    Google Scholar 

  • Spudich, J. A., and Lin, S., 1972, Cytochalasin B, its interaction with actin and actomyosin from muscle, Proc. Nat. Acad. Sci. (U.S.) 69: 442–446.

    CAS  Google Scholar 

  • Stewart, J. M., and Levy, H. M., 1970, The role of the calcium-troponin-tropomyosin complex in the activation of contraction, J. Biol. Chem. 245: 5764–5772.

    PubMed  CAS  Google Scholar 

  • Stossel, T. P., and Pollard, T. D., 1973, Myosin in polymorphonuclear leukocytes, J. Biol. Chem. 248: 8288–8294.

    PubMed  CAS  Google Scholar 

  • Strohman, R. C, and Samorodin, J., 1962, The requirements for adenosine triphosphate binding to globular actin, J. Biol. Chem. 237: 363–370.

    PubMed  CAS  Google Scholar 

  • Szent-Gyorgyi, A., 1951a, Chemistry of Muscle Contraction, p. 151, Academic Press, New York.

    Google Scholar 

  • Szent-Gyorgyi, A., 1951b, Chemistry of Muscle Contraction, p. 34, Academic Press, New York.

    Google Scholar 

  • Szent-Gyorgyi, A. G., 1951a, The reversible depolymerization of actin by potassium iodide, Arch. Biochem. Biophys. 31: 97–103.

    PubMed  CAS  Google Scholar 

  • Szent-Gyorgyi, A. G., 1951b, Anew method for the preparation of actin, J. Biol. Chem. 192: 361–369.

    PubMed  CAS  Google Scholar 

  • Thoa, N. B., Wooten, G. F., Axelrod, J., and Kopin, I. J., 1972, Inhibition of release of dop-amine-β-hydroxylase and norepinephrine from sympathetic nerves by colchicine, vinblastine, or cytochalasin-B, Proc. Nat. Acad. Sci. (U.S.) 69: 520–522.

    CAS  Google Scholar 

  • Tonomura, Y., Tokura, S., and Sekiya, K., 1962, Binding of myosin A to F-actin, J. Biol. Chem. 237: 1074–1081.

    PubMed  CAS  Google Scholar 

  • Weber, A., and Winicur, S., 1961, The role of calcium in the superprecipitation of actomyosin, J. Biol. Chem. 236: 3198–3202.

    PubMed  CAS  Google Scholar 

  • Weihing, R. R., and Korn, E. D., 1971, Acanthamoeba actin : Isolation and properties, Biochemistry 10: 590–600.

    PubMed  CAS  Google Scholar 

  • Weihing, R. R., and Korn, E. D., 1972, Acanthamoeba actin. Composition of the peptide that contains 3-methylhistidine and a peptide that contains N-methyllysine, Biochemistry 11: 1538–1543.

    PubMed  CAS  Google Scholar 

  • Wessels, N. K., Spooner, B. S., Ash, J. F., Bradley, M. O., Ludena, M. A., Taylor, E. L., Wrenn, J. T., and Yamada, K. M., 1971, Microfilaments in cellular and developmental processes, Science 171: 135–143.

    Google Scholar 

  • Whittaker, V. P., and Sheridan, M. N., 1965, The morphology and acetylcholine content of isolated cerebral cortical synaptic vesicles, J. Neurochem. 12: 363–372.

    PubMed  CAS  Google Scholar 

  • Williams, J. A., and Wolff, J., 1971, Cytochalasin B inhibits thyroid secretion, Biochem. Biophys. Res. Comm. 44: 422–425.

    PubMed  CAS  Google Scholar 

  • Wilson, L., Bryan, J., Ruby, A., and Mazia, D., 1970, Precipitation of proteins by vinblastine and calcium ions, Proc. Nat. Acad. Sci. (U.S.) 66: 807–814.

    CAS  Google Scholar 

  • Yang, Y., and Perdue, J. R., 1972, Contractile proteins of cultured cells, J. Biol. Chem. 247: 4503–4509.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berl, S. (1975). Actomyosin-Like Protein in Brain. In: Agranoff, B.W., Aprison, M.H. (eds) Advances in Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4395-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4395-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4397-5

  • Online ISBN: 978-1-4757-4395-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics