Skip to main content

Acetylcholinesterases of Gastrointestinal Nematodes

  • Chapter
Biology of Parasitism

Abstract

Vertebrate cholinesterases (ChEs) are broadly classified into two families based on their substrate specificity. Acetylcholinesterases (AChEs) terminate transmission of neuronal impulses by rapid hydrolysis of acetylcholine (ACh), and are therefore primarily associated with synaptic contacts in nerves and muscle (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arpagaus, M., Fedon, Y., Cousin, X., Chatonnet, A., Bergé, J.-B., Fournier, D., and Toutant, J.-P. (1994) cDNA sequence, gene structure, and in vitro expression of ace-1,the gene encoding acetylcholinesterase of class A in the nematode Caenorhabditis elegans J. Biol. Chem. 269,9957–9965.

    Google Scholar 

  • Arpagaus, M., Richier, P., Bergé, J.-B., and Toutant, J.-P. (1992) Acetylcholinesterases of the nematode Steinernema carpocapsae Characterization of two types of amphiphilic forms differering in their mode of membrane association. Eur. J. Biochem. 207, 11011108.

    Google Scholar 

  • Austin, L., and Berry, W.K. (1953) Two selective inhibitors of cholinesterase. Biochem. J. 54, 695–700.

    Google Scholar 

  • Bazelyansky, M., Robey, E., and Kirsch, J. F. (1986) Fractional diffusion-limited component of reactions catalyzed by acetylcholinesterase. Biochemistry 25, 125–30.

    Google Scholar 

  • Bourne, Y., Taylor, P., and Marchot, P. (1995) Acetylcholinesterase inhibition by fasciculin:crystal structure of the complex. Cell 83, 503–12.

    Google Scholar 

  • Culetto, E., Combes, D., Fedon, Y., Roig, A., Toutant, J.-P., and Arpagaus, M. (1999) Structure and promoter activity of the 5’ flanking region of ace-1, the gene encoding acetylcholinesterase of class A in Caenorhabditis elegans J. Mol. Biol. 290, 951–66.

    Google Scholar 

  • Cygler, M., Schrag, J.D., Sussman, J.L., Harel, M., Silman, I., Gentry, M.K., and Doctor, B.P. (1993) Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Prot. Sci. 2, 366–382.

    Google Scholar 

  • Dudai, Y., and Silman, I. (1974) Acetylcholinesterase. Meth. Enzymol. 34, 571–580.

    Google Scholar 

  • Ellman, G.L., Courtney, K.D., Andres, V., and Featherstone, R.M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88–95.

    Google Scholar 

  • Giacobini, E. (1998) Cholinesterase inhibitors for Alzheimer’s disease therapy: from tacrine to future applications. Neurochem. Int. 32, 413–9.

    Google Scholar 

  • Giles, K. (1997) Interactions underlying subunit associations in cholinesterases. Prot. Eng. 10, 677–685.

    Google Scholar 

  • Gnagey, A.L., Forte, M., and Rosenberry, T.L. (1987) Isolation and characterization of acetylcholinesterase from Drosophila J. Biol. Chem. 262, 13290–13298.

    Google Scholar 

  • Grauso, M., Culetto, E., Combes, D., Fedon, Y., Toutant, J.-P., and Arpagaus, M. (1998) Existence of four acetylcholinesterase genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae FEBS Lett. 424, 279–284.

    Google Scholar 

  • Greenfield, S.A. (1991) A non-cholineric action of acetylcholinesterase (AChE) in the brain: from neuronal secretion to the generation of movement. Cell. Mol. Neurobiol. 11, 5577.

    Google Scholar 

  • Griffiths, G., and Pritchard, D.I. (1994) Purification and biochemical characterisation of acetylcholinesterase (AChE) from the excretory/secretory products of Trichostrongylus colubriformis Parasitology 108,579–586.

    Google Scholar 

  • Grigg, M.E., Tang, L., Hussein, A.S., and Selkirk, M.E. (1997) Purification and properties of monomeric (G1) forms of acetylcholinesterase secreted by Nippostrongylus brasiliensis Mol. Biochem. Parasitol. 90, 513–524.

    Google Scholar 

  • Harel, M., Sussman, J.L., Krejci, E., Bon, S., Chanal, P., Massoulié, J., and Silman, I. (1992) Conversion of acetylcholinesterase to butyrylcholinesterase: modelling and mutagenesis. Proc. Natl. Acad. Sci. USA 89, 10827–10831.

    Google Scholar 

  • Helenius, A., and Simons, K. (1977) Charge shift electrophoresis: simple method for distinguishing between amphiphilic and hydrophilic proteins in detergent solution. Proc. Natl. Acad. Sci. USA 74, 529–532.

    Google Scholar 

  • Hussein, A.S., Chacôn, M.R., Smith, A.M., Tosado-Acevedo, R., and Selkirk, M.E. (1999) Cloning, expression and properties of a non-neuronal secreted acetylcholinesterase from the parasitic nematode Nippostrongylus brasiliensis J. Biol. Chem. 274, 93129319.

    Google Scholar 

  • Hussein, A.S., Grigg, M.E., and Selkirk, M.E. (1999) Nippostrongylus brasiliensis Characterisation of a somatic amphiphilic acetylcholinesterase with properties distinct from the secreted enzymes. Exp. Parasitol. 91,144–150.

    Google Scholar 

  • Hussein, A.S., Smith, A.M., Chacôn, M.R., and Selkirk, M.E. (2000) A second non-neuronal secreted acetylcholinesterase from the parasitic nematode Nippostrongylus brasiliensis determinants of substrate specificity. (Submitted for publication)

    Google Scholar 

  • Johnson, C.D., Rand, J.R., Herman, R.K., Stern, B.D., and Russell, R.L. (1988) The acetylcholinesterase genes of C. elegans identification of a third gene (ace-3) and mosaic mapping of a synthetic lethal phenotype. Neuron 1, 165–173.

    Google Scholar 

  • Johnson, C.D., and Russell, R.L. (1975) A rapid, simple radiometric assay for cholinesterase, suitable for multiple determinations. Anal. Biochem. 64, 229–38.

    Google Scholar 

  • Johnson, C.D., and Russell, R.L. (1983) Multiple molecular forms of acetylcholinesterase in the nematode Caenorhabditis elegans J. Neurochem. 41, 30–46.

    Google Scholar 

  • Karnovsky, M. J., and Roots, L. (1964) A ‘direct-coloring’ method for cholinesterases. J. Histochem. Cytochem. 12, 219–221.

    Google Scholar 

  • Kolson, D.L., and Russell, R.L. (1985) A novel class of acetylcholinesterase, revealed by mutations, in the nematode Caenorhabditis elegans J. Neurogenet. 2, 93–110.

    Google Scholar 

  • Lee, D.L. (1970) The fine structure of the excretory system in adult Nippostrongylus brasiliensis (Nematoda) and a suggested function for the “excretory glands”. Tissue Cell 2, 225–231.

    Google Scholar 

  • Lee, D.L. (1996) Why do some nematode parasites of the alimentary tract secrete acetylcholinesterase? Int. J. Parasitol. 26, 499–508.

    Google Scholar 

  • Martin, R.J. (1997) Modes of action of anthelmintic drugs. Vet. J. 154, 11–34.

    Google Scholar 

  • Massoulié, J., Sussman, J.L., Bon, S., and Silman, I. (1993) Structure and functions of acetylcholinesterase and butyrylcholinesterase. Prog. Brain Res. 98, 139–146.

    Google Scholar 

  • McLaren, D., Burt, J.S., and Ogilvie, B.M. (1974) The anterior glands of adult Necator americanus (nematoda: strongyloidea)-II. Cytochemical and functional studies. Int. J. Parasitol. 4, 39–46.

    Google Scholar 

  • Ogilvie, B.M., Rothwell, T.L.W., Bremner, K.C., Schitzerling, H.J., Nolan, J., and Keith, R. K. (1973) Acetylcholinesterase secretion by parasitic nematodes, 1. Evidence for secretion of the enzyme by a number of species. Int. J. Parasitol. 3, 589–597.

    Google Scholar 

  • Ordentlich, A., Barak, D., Kronman, C., Flashner, Y., Leitner, M., Segall, Y., Ariel, N., Cohen, S., Velan, B., and Shafferman, A. (1993) Dissection of the human acetylcholinesterase active center determinants of substrate specificity. J. Biol. Chem. 268, 17083–17095.

    Google Scholar 

  • Pritchard, D.I., Leggett, K.V., Rogan, M.T., McKean, P.G., and Brown, A. (1991) Necator americanus secretory acetylcholinesterase and its purification from excretory-secretory products by affinity chromatography. Parasite Immunol. 113,187–199.

    Google Scholar 

  • Radic, Z., Pickering, N.A., Vellom, D.C., Camp, S., and Taylor, P. (1993) Three distinct domains in the cholinesterase molecule confer selectivity for acetyl-and butyrylcholinesterase inhibitors. Biochemistry 32, 12074–12084.

    Google Scholar 

  • Rand, J.B., and Nonet, M.L. (1997) Synaptic transmission. C. elegans II. Cold Spring Harbor, New York: Cold Spring Harbor Press, 611–643.

    Google Scholar 

  • Rhoads, M.L. (1984) Secretory cholinesterases of nematodes: possible functions in the host-parasite relationship. Trop. Vet. 2, 3–10.

    Google Scholar 

  • Ripoll, D.R., Faerman, C.H., Axelson, P.H., Silman, I., and Sussman, J.L. (1993) An electrostatic mechanism for substrate guidance down the aromatic gorge of acetylcholinesterase. Proc. Natl. Acad. Sci. USA 90, 5128–5132.

    Google Scholar 

  • Sanders, M., Mathews, B., Sutherland, D., Soong, W., Giles, H., and Pezzementi, L. (1996) Biochemical and molecular characterization of acetylcholinesterase from the hagfish Myxine glutinosa Comp. Biochem. Physiol. 115B, 97–109.

    Google Scholar 

  • Selkirk, M.E., Hussein, A.S., Russell, W.S., Grigg, M.E., Chacôn, M.R., Smith, A.M., Henson, S., and Tippins, J.R. (1998) Secretory acetylcholinesterases of

    Google Scholar 

  • Nippostrongylus brasiliensis properties and implications for mucosal immunity. Structure and Function of Cholinesterases and Related Proteins. New York: Plenum Press, 515–522.

    Google Scholar 

  • Silver, A. (1974) The Biology of Cholinesterases. Amsterdam: North-Holland Publishing Company.

    Google Scholar 

  • Soreq, H., Patinkin, D., Lev-Lehman, E., Grifman, M., Ginzberg, D., Eckstein, F., and Zakut, H. (1994) Antisense oligonucleotide inhibition of acetylcholinesterase gene expression induces progenitor cell expansion and suppresses hematopoietic apoptosis ex vivo. Proc. Natl. Acad. Sci. USA 91, 7907–11.

    Google Scholar 

  • Sussman, J.L., Harel, M., Frolow, F., Oefner, C., Goldman, C., Toker, L., and Silman, I. (1991) Atomic structure of acetylcholinesterase from Torpedo californica a prototypic acetylcholine-binding protein. Science 253, 872–879.

    Google Scholar 

  • Taylor, P. (1991) The cholinesterases. J. Biol. Chem. 266, 4025–4028.

    Google Scholar 

  • Taylor, P., and Radic, Z. (1994) The cholinesterases: from genes to proteins. Annu. Rev. Pharmacol. Toxicol. 34, 281–320.

    Google Scholar 

  • Toutant, J.-P. (1986) An evaluation of the hydrophobic interactions of chick muscle acetylcholinesterase by charge shift electrophoresis and gradient centrifugation. Neurochem. Int. 9, 111–119.

    Google Scholar 

  • Toutant, J.-P. (1989) Insect acetylcholinesterase: catalytic properties, tissue distribution and molecular forms. Prog. Neurobiol. 32, 423–446.

    Google Scholar 

  • Vellom, D.C., Radic, Z., Li, Y., Pickering, N.A., Camp, S., and Taylor, P. (1993) Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Biochemistry 32, 12–17.

    Google Scholar 

  • Wilson, LB., Bergmann, F., and Nachmansohn, D. (1950) Acetylcholinesterase X. Mechanism of the catalysis of acylation reactions. J. Biol. Chem. 186, 781–790.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Selkirk, M.E., Hussein, A.S. (2000). Acetylcholinesterases of Gastrointestinal Nematodes. In: Tschudi, C., Pearce, E.J. (eds) Biology of Parasitism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4622-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4622-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4977-6

  • Online ISBN: 978-1-4757-4622-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics