Skip to main content

Digital Computer Simulation of Arterial Blood Flow

  • Conference paper
Chemical Engineering in Medicine and Biology

Abstract

The advent of high speed electronic computers has relaxed the necessity for restrictive assumptions demanded by classical mathematical methods, and numerical solution techniques now provide a means for investigation of complex mathematical systems. Thus, it is desirable to re-evaluate physiological models in terms not limited by traditional techniques; to search for new areas of application; and to show how these models may be used in clinical and research studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • ATTINGER, E. O. and ANNE, A. (1966). Simulation of the Cardiovascular System. Ann. N. Y. Acad. Sci., 128, 810–29.

    Article  Google Scholar 

  • BIRD, R. B., STEWART, W. E., and LIGHTFOOT, E. N. (1960). Transport Phenomena. New York, London: John Wiley & Sons.

    Google Scholar 

  • BURTON, A. C. (1960). Hemodynamics and the Physics of the Circulation. In: Medical Physiology and Biophysics, Ruch, T. C., and Fulton, J. F. (eds.), pp. 643–66. Philadelphia: Saunders.

    Google Scholar 

  • CHANG, C. C. and ATABEK, H. B. (1961). The Inlet Length for Oscillatory Flow and its Effects on the Determination of the Rate of Flow in Arteries. Phys. Med. Biol., 6, 303–317.

    Article  Google Scholar 

  • DEFARES, J. G., HARA, H. H., OSBORN, J. J. AND McLEOD, J. (1963). Theoretical Analysis and Computer Simulation of the Circulation with Special Reference to the Starting Properties of the Ventricles. In: Circulatory Analog Computers, Noordergraaf, A., Jager, G. N. and Westerhof, N. (eds.), pp. 91–122. Amsterdam: North-Holland Publishing Company.

    Google Scholar 

  • FAIRCHILD, B. T., WENGROW, H. R. and MAY, F. P. (1965). AMOS: Numerical Integration of Differential Equations with the Adams-Moulton-Shell Method. Report from the Department of Chemical Engineering, University of Florida, Gainesville, Florida.

    Google Scholar 

  • FOX, E. A. AND SAIBEL, E. (1963). Attempts in the Mathematical Analysis of Blood Flow. Trans. Soc. Rheology, 7, 25–31.

    Article  Google Scholar 

  • FRY, D. L. (1959). The Measurement of Pulsatile Blood Flow by the Computed Pressure Gradient Technique. IRE Trans. on Med. Electronics, 6, 259–64.

    Article  Google Scholar 

  • FRY, D. L. AND GREENFIELD, J. C. JR. (1964). The Mathematical Approach to Hemodynamics, with Particular Reference to Womersley’s Theory. In: Pulsatile Blood Flow, Attinger, E. D. (ed.), pp. 85–99. New York: McGraw-Hill.

    Google Scholar 

  • GESSNER, U. AND BERGEL, D. H. (1964). Frequency Response of Electromagnetic Flowmeters. J. Appl. Physiol., 19, 1209–11.

    Google Scholar 

  • GREENFIELD, J. C. JR. AND FRY, D. L. (1962). Measurement Errors in Estimating Aortic Blood Velocity by Pressure Gradient. J. Appl. Physiol., 17, 1013–19.

    Google Scholar 

  • KARREMAN, G. (1952). Some contributions to the Mathematical Biology of Blood Circulation. Reflections of Pressure Waves in the Arterial System. Bull. Math. Biophys., 14, 327–50.

    Article  Google Scholar 

  • KROVETZ, L. J. (1965). The Effect of Vessel Branching on Haemodynamic Stability. Phys. Med. Biol., 10, 417–27.

    Article  Google Scholar 

  • KROVETZ, L. J. AND BENSON, R. W. (1965). Mixing of Dye and Blood in the Canine Aorta. J. Appl. Physiol., 20, 922–926.

    Google Scholar 

  • LAMBERT, J. W. (1956). Fluid Flow in a Nonrigid Tube. Ph. D. Thesis, Purdue University.

    Google Scholar 

  • LAMBERT, J. W. (1958). On the Nonlinearities of Fluid Flow in Nonrigid Tubes. J. Franklin Inst., 266, 83–102.

    Article  Google Scholar 

  • McDonald, D. A. (1952). The Occurrence of Turbulent Flow in the Rabbit Aorta. J. Physiol., 118, 340–47.

    Google Scholar 

  • McDonald, D. A. (1960). Blood Flow in Arteries. London: Edward Arnold, also Baltimore: Williams and Wilkins.

    Google Scholar 

  • MORGAN, G. W., AND KIELY, J. P. (1954). Wave Propagation in a Viscous Liquid Contained in a Flexible Tube. J. Acoust. Soc. Amer., 27, 715–25.

    Article  Google Scholar 

  • NOORDERGRAAF, A. (1963). Development of an Analog Computer for the Human Systemic Circulatory System. In: Circulatory Analog Computers, Noordergraaf, A., Jager, G. N. and Westerhof, N. (eds.), pp. 29–44. Amsterdam: North-Holland Publishing Company.

    Google Scholar 

  • OLMSTED, F. (1959). Measurement of Cardiac Output in Unrestrained Dogs by an Implanted Electromagnetic Meter. IRE Trans. on Med. Electronics, 6, 210–213.

    Article  Google Scholar 

  • OLMSTED, F. (1962). Phase Detection Electromagnetic Flowmeter-Design and Use. IRE Trans. on Bio-Med. Electronics, 9, 88–92.

    Google Scholar 

  • OLMSTED, F. AND ALDRICH, F. D. (1961). Improved Electromagnetic Flowmeter; Phase Detection, a New Principle. J. Appl. Physiol., 16, 197–201.

    Google Scholar 

  • REPETTI, R. W. AND LEONARD, E. F. (1965). Physical Basis for the Axial Accumulation of Red Cells. Paper presented at the 56th National Meeting AICHE, San Francisco, California.

    Google Scholar 

  • REYNOLDS., O. (1883). An Experimental Investigation of the Circumstances which Determine whether the Motion of

    Google Scholar 

  • Water shall be Direct or Sinuous, and of the Laws of Resistance in Parallel Channels. Philos. Trans., 174, 935–82.

    Google Scholar 

  • SCHULTZ-GRUNOW, F. (1940). Pulsierender Durchflug durch Rohre. Forschg. Ing. - Wesen, 11, 170.

    Article  Google Scholar 

  • SEXL, TH. (1930). her den von E. G. Richardson entdeckten,,Annlareffekt“. Z. Phys. 61, 349.

    Google Scholar 

  • SHAPIRO, A. H. (1954). The Dynamics and Thermodynamics of Compressible Fluid Flow. New York: Ronald Press.

    Google Scholar 

  • SPENCER, M. P. AND DENISON, A. B. (1959). The Square-Wave Electromagnetic Flowmeter: Theory of Operation and Design of Magnetic Probes for Clinical and Experimental Application. IRE Trans. on Med. Electronics, 6, 220–28.

    Article  Google Scholar 

  • STREETER, V. L., KEITZER, W. F. AND BOHR, D. F. (1963). Pulsatile Pressure and Flow Through Distensible Vessels. Circulation Res., 13, 3–20.

    Article  Google Scholar 

  • UCHIDA, S. (1956). The Pulsating Viscous Flow Superposed on the Steady Laminar Motion of Incompressible Fluid in a Circular Pipe. ZAMP VII, 403–22.

    Google Scholar 

  • WARNER, H. R. (1959). The Use of an Analog Computer for Analysis of Control Mechanisms in the Circulation. Proc. IRE, 47, 1913–16.

    Article  Google Scholar 

  • WITZIG, K. (1914). Ãœber erzwungene Wellenbewegungen zäher, incompressibler Flüssigkeiten in elastischen RBhren. Inaug. Diss. Bern. Bern: Wyss.

    Google Scholar 

  • WOMERSLEY, J. R. (1955). Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries when the Pressure Gradient is Known. J. Physiol. 127, 553–63.

    Google Scholar 

  • WOMERSLEY, J. R. (1957). An Elastic Tube Theory of Pulse Transmission and Oscillatory Flow in Mammalian Arteries. Wright Air Development Center, Technical Report WADC-TR 56–614.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1967 Springer Science+Business Media New York

About this paper

Cite this paper

Fairchild, B.T., Krovetz, L.J., Huckaba, C.E. (1967). Digital Computer Simulation of Arterial Blood Flow. In: Hershey, D. (eds) Chemical Engineering in Medicine and Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4748-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4748-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4750-8

  • Online ISBN: 978-1-4757-4748-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics