Skip to main content

Food Acquisition and the Evolution of Positional Behaviour: The Case of Bipedalism

  • Chapter
Food Acquisition and Processing in Primates

Abstract

Links between positional behaviour and food acquisition are undeniably important. As Napier (1970) puts it, an animal must move to feed and feed to move. With some interesting exceptions, however, positional behaviour is determined by the distribution rather than by the nature of food items. As it relates to food acquisition, an arboreal species’ locomotor behaviour is determined by the large scale distribution of food items within trees, and postural behaviour is determined by the local distribution of food, usually within the peripheral parts of a tree crown. While the terrestrial environment is in many ways less complex, the clumping of food items on or close to the ground similarly influences positional behaviour. It is thus the structures that intervene between an animal and its food that are important for positional behaviour. An animal of a given size and morphology will use a particular positional repertoire and style of performance of particular activities to select a set of these intervening structures as a substrate or superstrate during foraging and feeding. Changes in diet and in ways of acquiring food are therefore likely to have been important in the evolution of different types of positional morphology and behaviour to the extent that different sets of intervening structures were encountered. One cannot therefore expect positional morphology to track changing dietary patterns as closely as dental morphology may. As Ripley (1979) has shown, however, it is possible to explore the evolutionary links between positional behaviour and food acquisition. This paper explores some of these points with respect to the evolution of bipedalism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiello, L.C. (1981) Locomotion in the Miocene Hominoidea. In “Aspects of Human Evolution” ( C.B. Stringer, ed.), pp. 6397. Taylor and Francis, London.

    Google Scholar 

  • Aiello, L.C. and Day, M.H. (1982) The evolution of locomotion in the early Hominidae. In “Progress in Anatomy” ( R.J. Harrison and V. Navaratnam, eds.), vol. 2, pp. 81–97. Cambridge University Press, Cambridge.

    Google Scholar 

  • Ashton, E.H., Flinn, R.M., Moore, W.J., Oxnard, C.E. and Spence, T.F. (1981) Further quantitative studies of form and function in the primate pelvis with special reference to Australopithecus. Trans. tool. Soc. Lond. 36: 1–98.

    Article  Google Scholar 

  • Bartholomew, G.A., Jr. and Birdsell, J.B. (1953) Ecology and the protohominids. Am. Anthropol. 55: 481–498.

    Article  Google Scholar 

  • Boaz, N.T. (1980) A hominoid clavicle from the Mio-Pliocene of Sahabi, Libya. Am. J. phys. Anthrop. 53: 49–54.

    Article  CAS  Google Scholar 

  • Bush, M.E., Lovejoy, C.O., Johanson, D.C. and Coppens, Y. (1982) Hominid carpal, metacarpal, and phalangeal bones recovered from the Hadar Formation: 1974–1977 collections. Am. J. phys. Anthrop. 57: 651–677.

    Article  Google Scholar 

  • Christie, P. (1977) Form and function of the Afar ankle. Am. J. phys. Anthrop. 47: 123.

    Google Scholar 

  • Conroy, G. and Fleagle, J.G. (1972) Locomotor behavior in living and fossil pongids. Nature 237: 103–104.

    Article  Google Scholar 

  • Day, M.H. (1976) Hominid postcranial material from Bed I, Olduvai Gorge. In “Human Origins” ( G.L. Isaac and E.R. McCown, eds.), pp. 363–374. Benjamin, Menlo Park.

    Google Scholar 

  • Day, M.H. (1978) Functional interpretations of the morphology of postcranial remains of early African hominids. In “Early Hominids of Africa” ( C.J. Jolly, ed.), pp. 311–345. Duckworth, London.

    Google Scholar 

  • Day, M.H. and Napier, J.R. (1964) Hominid fossils from Bed I, Olduvai Gorge, Tanganyika: fossil foot bones. Nature 201: 967–970.

    Article  Google Scholar 

  • Day, M.H. and Wood, B.A. (1968) Functional affinities of the Olduvai Hominid 8 talus. Man 3: 440–455.

    Article  Google Scholar 

  • Day, M.H. and Wickens, E.H. (1980) Laetoli Pliocene hominid footprints and bipedalism. Nature 286: 385–387.

    Article  Google Scholar 

  • Fleagle, J.G. and Kay, R.F. (1983) New interpretations of the phyletic position of Oligocene hominoids. In “New Interpretations of Ape and Human Ancestry” (R.L. Ciochon and

    Google Scholar 

  • R.F. Corruccini, eds.). Plenum, New York (in press).

    Google Scholar 

  • Fleagle, J.G., Stern, J.T. Jr., Jungers, W.L., Susman, R.L., Vangor, A.K. and Wells, J.P. (1981) Climbing: a biomechanical link with brachiation and with bipedalism. Symp. zool. Soc. Lond. 48: 359–373.

    Google Scholar 

  • Grine, F.E. (1981) Trophic differences between ‘gracile’ and ’robust’ australopithecines: a scanning electron microscope analysis of occlusal events. S. Afr. J. Sci. 77: 203–230.

    Google Scholar 

  • Harrison, T. (1982) Small Bodied Apes from the Miocene of East Africa. Unpubl. Ph.D. dissertation, University of London.

    Google Scholar 

  • Hewes, G.W. (1961) Food transport and the origin of hominid bipedalism. Amer. Anthropol. 63: 687–710.

    Article  Google Scholar 

  • Hewes, G.W. (1964) Hominid bipedalism: independent evidence for the food-carrying theory. Science 146: 416–418.

    Article  CAS  Google Scholar 

  • Johanson, D.C. and White, T.D. (1979) A systematic assessment of early African hominids. Science 203: 321–330.

    Article  CAS  Google Scholar 

  • Johanson, D.C., Lovejoy, C.O., Kimble, W.H., White, T.D., Ward, S.C., Bush, M.E., Latimer, B.M. and Coppens, Y. (1982) Morphology of the Pliocene partial hominid skeleton (A.L. 288–1) from the Hadar Formation, Ethiopia. Am. J. phys. Anthrop. 57: 403–451.

    Article  Google Scholar 

  • Latimer, B.M., Lovejoy, C.O., Johanson, D.C. and Coppens, Y. (1982) Hominid tarsal, metatarsal, and phalangeal bones recovered from the Hadar Formation: 1974–1977 collections. Am. J. phys. Anthrop. 57: 701–719.

    Article  Google Scholar 

  • Lewis, 0.J. (1971) Brachiation and the early evolution of the Hominoidea. Nature 230: 577–578.

    Article  Google Scholar 

  • Lewis, 0.J. (1972a) Evolution of the hominoid wrist. In “The Functional and Evolutionary Biology of the Primates” ( R.H. Tuttle, ed.), pp. 207–222. Aldine-Atherton, New York.

    Google Scholar 

  • Lewis, 0.J. (1972b) Osteological features characterizing the wrists of monkeys and apes, with a reconsideration of this region in Dryopithecus (Proconsul) africanus. Am. J. phys. Anthrop. 36: 45–58.

    Article  Google Scholar 

  • Lewis, 0.J. (1974) The wrist articulations of the Anthropoidea. In “Primate Locomotion” ( F.A. Jenkins, Nr., ed.), pp. 143–169. Academic Press, New York.

    Google Scholar 

  • Lewis, 0.J. (1977) Joint remodelling and the evolution of the human hand. J. Anat. 123: 157–201.

    Google Scholar 

  • Lewis, 0.J. (1980) The joints of the evolving foot. Part III. The fossil evidence. J. Anat. 131: 275–298.

    Google Scholar 

  • Lewis, O.J. (1981) Functional morphology of the joints of the evolving foot. Symp. zool. Soc. Lond. 46: 169–185. Livingstone, F.B. (1962) Reconstructing man’s Pliocene pongid ancestor. Amer. AnthropoZ. 64: 301–305.

    Google Scholar 

  • Lovejoy, C.O. (1974) The gait of australopithecines. Yearb. Phys. Anthrop. 17: 147–161.

    Google Scholar 

  • Lovejoy, C.O. (1975) Biomechanical perspectives on the lower limb of early hominids. In “Primate Functional Morphology and Evolution” ( R.H. Tuttle, ed.), pp. 291–326. Mouton, The Hague.

    Google Scholar 

  • Lovejoy, C.O. (1978) A biomechanical review of the locomotor diversity of early hominids. In “Early Hominids of Africa” ( C.J. Jolly, ed.), pp. 403–429. Duckworth, London.

    Google Scholar 

  • Lovejoy, C.O. (1981) The origin of man. Science 211: 341–350.

    Article  CAS  Google Scholar 

  • Lovejoy, C.O., Heiple, K.G. and Burstein, A.H. (1973) The gait of Australopithecus. Am. J. phys. Anthrop. 38: 757–780.

    Article  CAS  Google Scholar 

  • McHenry, H.M. (1978) Fore-and hindlimb proportions in Plio-Pleistocene hominids. Am. J. phys. Anthrop. 49: 15–22.

    Article  CAS  Google Scholar 

  • McHenry, H.M. and Temerin, L.A. (1979) The evolution of hominid bipedalism: evidence from the fossil record. Yearb. Phys. Anthrop. 22: 105–131.

    Google Scholar 

  • Mittermeier, R.A. (1978) Locomotion and posture in AteZes geoffroyi and AteZes paniscus. Folia primatol. 30: 161–193.

    Article  CAS  Google Scholar 

  • Mittermeier, R.A. and Fleagle, J.G. (1976) The locomotor and postural repertoire of AteZes geoffroyi and Colobus guereza, and a reconsideration of the locomotor category semibrachiation. Am. J. phys. Anthrop. 45: 235–256.

    Article  Google Scholar 

  • Morbeck, M.E. (1975) Dryopithecus africanus forelimb. J. hum. Evol. 4: 39–46.

    Article  Google Scholar 

  • Morbeck, M.E. (1983) Miocene hominoid discoveries from Rudabânya: implications from the postcranial fossils. In “New Interpretations of Ape and Human Ancestry” (R.L. Ciochon and R.F. Corruccini, eds.). Plenum, New York (in press).

    Google Scholar 

  • Napier, J.R. (1964) The evolution of bipedal walking in the hominids. Arch. Biot. 75: 673–708.

    Google Scholar 

  • Napier, J.R. (1967) Evolutionary aspects of primate locomotion. Am. J. phys. Anthrop. 27: 333–342.

    Article  CAS  Google Scholar 

  • Napier, J.R. (1970) Paleoecology and catarrhine evolution. In “Old World Monkeys: Evolution, Systematics and Behavior” ( J.R. Napier and P.H. Napier, eds.), pp. 53–95. Academic Press, New York.

    Google Scholar 

  • Napier, J.R. and Davis, P.R. (1959) The forelimb skeleton and associated remains of Proconsul africanus. Fossil Mammals of Africa 16: 1–70.

    Google Scholar 

  • Oxnard, C.E. (1968) A note of the Olduvai clavicular fragment. Am. J. phys. Anthrop. 29: 429–432.

    Article  CAS  Google Scholar 

  • Oxnard, C.E. and Lisowski, F.P. (1980) Functional articulation of some hominoid foot bones: implications for the Olduvai (Hominid 8) foot. Am. J. phys. Anthrop. 52: 107–117.

    Article  CAS  Google Scholar 

  • Preuschoft, H. (1973) Body posture and locomotion in some East African Miocene Dryopithecinae. In “Human Evolution” ( M.H. Day, ed.), pp. 13–46. Barnes and Noble, New York.

    Google Scholar 

  • Prost, J.H. (1980) Origin of bipedalism. Am. J. phys. Anthrop. 52: 175–189.

    Article  CAS  Google Scholar 

  • Ripley, S. (1967) The leaping of langurs: a problem in the study of locomotor adaptation. Am. J. phys. Anthrop. 26: 149–170.

    Article  Google Scholar 

  • Ripley, S. (1979) Environmental grain, niche diversification, and positional behavior in Neogene primates: an evolutionary hypothesis. In “Environment, Behavior, and Morphology: Dynamic Interactions in Primates” ( M.E. Morbeck, H. Preuschoft and N. Gomberg, eds.), pp. 37–74. Fischer, New York.

    Google Scholar 

  • Robinson, J.T. (1972) “Early Hominid Posture and Locomotion”. University of Chicago Press, Chicago.

    Google Scholar 

  • Robinson, J.T. (1978) Evidence for locomotor difference between gracile and robust early hominids from South Africa. In “Early Hominids of Africa” ( C.J. Jolly, ed.), pp. 441–457. Duckworth, London.

    Google Scholar 

  • Rodman, P.S. and McHenry, H.M. (1980) Bioenergetics and the origin of hominid bipedalism. Am. J. phys. Anthrop. 52: 103–106.

    Article  CAS  Google Scholar 

  • Rollinson, J. and Martin, R.D. (1981) Comparative aspects of primate locomotion, with special reference to arboreal cercopithecines. Symp. tool. Soc. Lond. 48: 377–428.

    Google Scholar 

  • Rose, M.D. (1973) Quadrupedalism in primates. Primates 14: 337357.

    Google Scholar 

  • Rose, M.D. (1974) Postural adaptations in New and Old World monkeys. In “Primate Locomotion” ( F.A. Jenkins, Jr., ed.), pp. 201–222. Academic Press, New York.

    Google Scholar 

  • Rose, M.D. (1976) Bipedal behavior of olive baboons (Papio anubis) and its relevance to an understanding of the evolution of human bipedalism. Am. J. phys. Anthrop. 44: 247–262.

    Article  CAS  Google Scholar 

  • Rose, M.D. (1979) Positional behavior of natural populations: some quantitative results of a field study of Colobus guereza and Cercopithecus aethiops. In “Environment, Behavior, and Morphology: Dynamic Interactions in Primates” ( M.E. Morbeck, H. Preuschoft and N. Gomberg, eds.), pp. 7594. Fischer, New York.

    Google Scholar 

  • Rose, M.D. (1983) Miocene hominoid postcranial morphology: monkey-like, ape-like, neither, or both? In “New Interpretations of Ape and Human Ancestry” (R.L. Ciochon and R.F. Corruccini, eds.). Plenum, New York (in press).

    Google Scholar 

  • Schön, M. and Ziemer, L. (1973) Wrist mechanism and locomotor behavior of Dryopithecus (Proconsul) africanus. Fo lia primatol. 20: 1–11.

    Google Scholar 

  • Senut, B. (1981) “L’Humérus et ses Articulations chez les Hominidés Plio-Pléistocénes”. CNRS, Paris.

    Google Scholar 

  • Sigmon, B.A. (1971) Bipedal behavior and the emergence of erect posture in man. Am. J. phys. Anthrop. 34: 55–60.

    Article  CAS  Google Scholar 

  • Steudel, K. (1980) New estimates of early hominid body size. Am. J. phys. Anthrop. 52: 63–70.

    Article  Google Scholar 

  • Straus, W.L. (1949) The riddle of man’s ancestry. Quart. Rev. Biol. 24: 200–223.

    Article  Google Scholar 

  • Straus, W.L. (1962) Fossil evidence of the evolution of the erect bipedal posture. Clin. Orthopaedics 25: 9–19.

    Google Scholar 

  • Struhsaker, T.T. (1967) Ecology of vervet monkeys (Cercopithecus aethiops) in the Masai-Amboseli Game Reserve, Kenya. Ecology 48: 891–904.

    Article  Google Scholar 

  • Susman, R.L. and Creel, N. (1979) Functional and morphological affinities of the subadult hand (OH 7) from Olduvai Gorge. Am. J. phys. Anthrop. 51: 311–332.

    Article  CAS  Google Scholar 

  • Susman, R.L. and Stern, J.T., Jr. (1979) Telemetered electromyography of flexor digitorum profundus and flexor digitorum superficialis in Pan troglodytes and implications for interpretation of the O.H. 7 hand. Am. J. phys. Anthrop. 50: 565–574.

    Article  CAS  Google Scholar 

  • Tuttle, R.H. (1977) Naturalistic positional behavior of apes and models of hominid evolution, 1929–1976. In “Progress in Ape Research” ( G.H. Bourne, ed.), pp. 277–296. Academic Press, New York.

    Google Scholar 

  • Tuttle, R.H., Cartright, G.W. and Buxhoeveden, D.P. (1979) Anthropology on the move: progress in experimental studies of nonhuman primate positional behavior. Yearb. Phys. Anthrop. 22: 187–214.

    Google Scholar 

  • Vrba, E.S. (1979) A new study of the scapula of Australopithecus africanus from Sterkfontein. Am. J. phys. Anthrop. 51: 117–130.

    Article  Google Scholar 

  • Walker, A.C. and Pickford, M. (1983) New postcranial fossils of Proconsul africanus and Proconsul nyanzae. In “New Interpretations of Ape and Human Ancestry” (R.L. Ciochon and R.F. Corruccini, eds.). Plenum, New York (in press).

    Google Scholar 

  • Wescott, R.W. (1967) The exhibitionistic origin of human bipedal-ism. Man 2: 630.

    Google Scholar 

  • White, T.D. (1980) Additional fossil hominids from Laetoli, Tanzania: 1976–1979 specimens. Am. J. phys. Anthrop. 53: 487–504.

    Article  Google Scholar 

  • Wood Jones, F. (1918) “The Problem of Man’s Ancestry”. Society for Promoting Christian Knowledge, London.

    Google Scholar 

  • Zihlman, A. and Brunker, L. (1979) Hominid bipedalism: then and now. Yearb. Phys. Anthrop. 22: 132–162.

    Google Scholar 

  • Zuckerman, S., Ashton, E.H., Flinn, R.M., Oxnard, C.E. and Spence, T.F. (1973) Some locomotor features of the pelvic girdle in primates. Symp. zooZ. Soc. Lond. 33: 71–165.

    Google Scholar 

  • Zwell, M. and Conroy, G. (1973) Multivariate analysis of the Dryopithecus africanus forelimb. Nature 244: 373–375.

    Article  CAS  Google Scholar 

  • Stern, J.T., Jr. and Susman, R.L. (1983) The locomotor anatomy of Australopithecus afarensis. Am. J. phys. Anthrop. 60 (in press).

    Google Scholar 

  • Susman, R.L. and Stern, J.T., Jr. (1982) Functional morphology of Homo habilis. Science 217: 931–934.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rose, M.D. (1984). Food Acquisition and the Evolution of Positional Behaviour: The Case of Bipedalism. In: Chivers, D.J., Wood, B.A., Bilsborough, A. (eds) Food Acquisition and Processing in Primates. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5244-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5244-1_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5246-5

  • Online ISBN: 978-1-4757-5244-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics