Skip to main content

Relational Complementarity Problem

  • Chapter
From Local to Global Optimization

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 53))

Abstract

The concept of binary relation is applied to generalize the complementarity problem. Dual relations are introduced as an analogue to dual cones in the generalized complementarity problem. A concept of linearization is introduced by considering the minimal linear relation stronger than the given relation. Geometric characteristics are studied as are the interconnections between a binary relation, its linearization and its dual. Existence of solutions for the new type of complementarity problem is investigated. In particular we consider the complementarity problem associated to a relation defined by the union of a family of pointed closed convex cones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Borwein: Automatic continuity and openness of convex relations. Proc. Amer. Math. Soc, 99, Nr 1 (1987), 49–55.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. M. Borwein and A. H. Dempster: The linear order complementarity problem. Math. Operations Research, Vol. 14 (1989), 534–558.

    Article  MathSciNet  Google Scholar 

  3. B. Borzenko: Approximational approach to multicriteria problems, in: Methodology and Software for Interactive Decision Support, (A. Lewandowki and I. Stanchev, Eds.), Lecture Notes in Economics and Mathematical Systems, Nr. 337, Springer- Verlag, 1989.

    Google Scholar 

  4. V. Bulayski, G. Isac and V. Kalashnikov: Application of topological degree to complementarity problem, In: Multilevel Optimization: Algorithms and Application, (A. Migdalaset al (Eds.) Kluwer Academic Publishers, (1998), 333–358.

    Google Scholar 

  5. A. Carla: On a separation approach to variational inequalities, in: Variational Inequalities and Network Equilibrium Problems, (F. Giannessi and A. Maugeri, (Eds.)), Plenum Press, New York and London (1995), 1–7.

    Google Scholar 

  6. F. Giannessi: Separation of sets and gap functions for quasi-variational inequalities, in: Variational Inequalities and Network Equilibrium Problems, (F. Giannessi and A Maugeri, (Eds.)), Plenum Press, New York and London (1995), 101–121.

    Google Scholar 

  7. D. Goeleven: Noncoercive hemivariational inequality approach to constrained problems for star-shaped admissible sets, J. Global Opt., 9 (1996), 121–140.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Habetler and A. Price: Existence theory for generalized nonlinear complementarity problems. J. Opt. Th. Appl. 7, (1971), 223–239.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Isac: Complernentarity Problems, Lecture Notes in Mathematics 1528, Springer-Verlag, New York (1992).

    Google Scholar 

  10. G. Isac, V. Bulayski and V. Kalashnikov: Exceptional families, topological degree and complementarity problems, J. Global Opt., 10 (1997), 207–225.

    Article  MATH  Google Scholar 

  11. G. Isac and M. M. Kostreva: Kneser’s theorem and the multivalued generalized order complementarity problem, Appl. Math. Letters 4 Nr. 6, (1991), 81–85.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Isac and M. M. Kostreva: The generalized order complementarity problem, J. Opt. Theory Appl. 71 Nr. 3 (1991), 517–534.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Isac, M. M. Kostreva and M. Wiecek: Multiple objective approximation of feasible but unsolvable linear complementarity problems, J. Opt. Theory Appl. 86 Nr. 2 (1995), 389–405.

    Article  MathSciNet  Google Scholar 

  14. J. Jahn: Mathematical Vector Optimization in Partially Ordered Linear Spaces, Verlag Peter Lang, Frankfurt am Main, Germany (1986).

    Google Scholar 

  15. M. M. Kostreva and M. M. Wiecek: Linear complementarity problems and multiple objective programming, Math. Programming 60 Nr. 3 (1993), 349–359.

    Google Scholar 

  16. C. Marco and M Giandomenico: On the duality theory for finite dimensional variational inequalities, in: Variational Inequalities and Network Equilibrium Problems, (F. Giannessi and A. Maugeri (Eds.)), Plenum Press, New York and London (1995), 21–31.

    Google Scholar 

  17. U. Mosco: Dual variational inequalities, J. Math. Anal. Appl. 40 (1972), 202–206.

    Article  MathSciNet  MATH  Google Scholar 

  18. Z. Naniewicz: Hemivariational inequality approach to constrained problem for star-shaped admissible sets, J. Opt. Theory Appl. 83 Nr. 1 (1994), 97–112.

    Google Scholar 

  19. P. D. Panagiotopoulos: Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer- Verlag, Berlin, Heidelberg (1993).

    Google Scholar 

  20. J. P. Penot: Fixed point theorems without convexity, Analyse non-convexe 1977-Paul, Bull. Soc. Math. France, Memoire 60 (1979), 129–152.

    MATH  Google Scholar 

  21. R. Saigal: Extension of the generalized complementarity problem, Math. Operations Research, 1 (1976), 260–266.

    Article  MATH  Google Scholar 

  22. Y. Sawaragi, H. Nakayama and T. Tanino: Theory of Multiobjective Optimization, Academic Press, Orlando (1985).

    Google Scholar 

  23. Z. You and S. Zhu: A constructive Approach for proving the existence of solutions of variational inequalities with set-valued maps, Kexue Tongbao, 31 (1986), 1153–1156.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Isac, G., Kostreva, M.M., Polyashuk, M. (2001). Relational Complementarity Problem. In: Migdalas, A., Pardalos, P.M., Värbrand, P. (eds) From Local to Global Optimization. Nonconvex Optimization and Its Applications, vol 53. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5284-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5284-7_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4852-6

  • Online ISBN: 978-1-4757-5284-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics