Skip to main content

Part of the book series: Developments in Mathematics ((DEVM,volume 5))

Abstract

In this paper we derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi’s 4 and 8 squares identities to 4n 2 or 4n(n + 1) squares, respectively, without using cusp forms. In fact, we similarly generalize to infinite families all of Jacobi’s explicitly stated degree 2, 4, 6, 8 Lambert series expansions of classical theta functions. In addition, we extend Jacobi’s special analysis of 2 squares, 2 triangles, 6 squares, 6 triangles to 12 squares, 12 triangles, 20 squares, 20 triangles, respectively. Our 24 squares identity leads to a different formula for Ramanujan’s tau function τ (n), when n is odd. These results, depending on new expansions for powers of various products of classical theta functions, arise in the setting of Jacobi elliptic functions, associated continued fractions, regular C-fractions, Hankel or Turánian determinants, Fourier series, Lambert series, inclusion/exclusion, Laplace expansion formula for determinants, and Schur functions. The Schur function form of these infinite families of identities are analogous to the η-function identities of Macdonald. Moreover, the powers 4n(n + 1), 2n 2 + n, 2n 2n that appear in Macdonald’s work also arise at appropriate places in our analysis. A special case of our general methods yields a proof of the two Kac-Wakimoto conjectured identities involving representing a positive integer by sums of 4n 2 or 4n(n + 1) triangular numbers, respectively. Our 16 and 24 squares identities were originally obtained via multiple basic hypergeometric series, Gustafson’s C nonterminating 6 φ 5 summation theorem, and Andrews’ basic hypergeometric series proof of Jacobi’s 2, 4, 6, and 8 squares identities. We have (elsewhere) applied symmetry and Schur function techniques to this original approach to prove the existence of similar infinite families of sums of squares identities for n 2 and n (n + 1) squares. Our sums of more than 8 squares identities are not the same as the formulas of Mathews (1895), Glaisher (1907), Sierpinski (1907), Uspensky (1913, 1925, 1928), Bulygin (1914, 1915), Ramanujan (1916), Mordell (1917, 1919), Hardy (1918, 1920), Bell (1919), Estermann (1936), Rankin (1945, 1962), Lomadze (1948), Walton (1949), Walfisz (1952), Ananda-Rau (1954), van der Pol (1954), Krätzel (1961, 1962), Bhaskaran (1969), Gundlach (1978), Kac and Wakimoto (1994), and, Liu (2001). We list these authors by the years their work appeared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.H. Abel, “Recherches sur les fonctions elliptiques,” J. Reine Angew. Math. 2 (1827), 101–181; reprinted in (Euvres Completes Ti, Grondahl and Son, Christiania, 1881, pp. 263–388; reprinted by Johnson Reprint Corporation, New York, 1965.

    Google Scholar 

  2. W.A. Al-Salem and L. Carlitz, “Some determinants of Bernoulli, Euler, and related numbers,” Portugal. Math. 18 (2) (1959), 91–99.

    MathSciNet  Google Scholar 

  3. K. Ananda-Rau, “On the representation of a number as the sum of an even number of squares,” J. Madras Univ. Sect B 24 (1954), 61–89.

    MathSciNet  MATH  Google Scholar 

  4. G.E. Andrews, “Applications of basic hypergeometric functions,” SIAM Rev. 16 (1974), 441–484.

    MathSciNet  MATH  Google Scholar 

  5. G.E. Andrews, “q-Series: Their development and application in analysis, number theory, combinatorics, physics and computer algebra,” In: NSF CBMS Regional Conference Series, Vol. 66, 1986.

    Google Scholar 

  6. G.E. Andrews, R. Askey, and R. Roy, “Special functions;” In: Encyclopedia of Mathematics and its Applications, Vol. 71 ( G.-C. Rota, ed.), Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  7. G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook, Part I, Springer-Verlag, New York.

    Google Scholar 

  8. TM. Apostol, Modular Functions and Dirichlet Series in Number Theory, Vol. 41 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1976.

    MATH  Google Scholar 

  9. R. Askey and M.E.H. Ismail, “Recurrence relations, continued fractions and orthogonal polynomials,” Mem, Amer. Math. Soc. 300 (1984), 108 pp.

    MathSciNet  Google Scholar 

  10. H. Au-Yang and J.H.H. Perk, “Critical correlations in a Z-invariant inhomogeneous Ising model,” Phys. A 144 (1987), 44–104.

    MathSciNet  Google Scholar 

  11. I.G. Bashmakova, “Diophantus and diophantine equations,” Vol. 20 of The Dolciani Mathematical Expositions, Mathematical Association of America, Washington, DC, 1997, xvi+90 pp.; translated from the 1972 Russian original by Abe Shenitzer and updated by Joseph Silverman.

    Google Scholar 

  12. I.G. Bashmakova and G.S. Smirnova, “The birth of literal algebra,” Amer. Math. Monthly 106 (1999), 57–66.

    MathSciNet  MATH  Google Scholar 

  13. E.F. Beckenbach, W. Seidel, and O. Szâsz, “Recurrent determinants of Legendre and of ultraspherical polynomials,” Duke Math. J. 18 (1951), 1–10.

    MathSciNet  MATH  Google Scholar 

  14. E.T. Bell, “On the number of representations of 2r as a sum of 2r squares. Bull Amer. Math. Soc. 26 (1919), 19–25.

    MathSciNet  MATH  Google Scholar 

  15. E.T. Bell, “Theta expansions useful in arithmetic,” The Messenger of Mathematics (New Series) 53 (1924), 166–176.

    Google Scholar 

  16. E.T. Bell, “On the power series for elliptic functions,” Trans. Amer. Math. Soc. 36 (1934), 841–852.

    MathSciNet  Google Scholar 

  17. E.T. Bell, “The arithmetical function M(n, f, g) and its associates connected with elliptic power series,” Amer. J. Math. 58 (1936), 759–768.

    MathSciNet  Google Scholar 

  18. E.T. Bell, “Polynomial approximations for elliptic functions,” Trans. Amer. Math. Soc. 44 (1938), 47–57.

    MathSciNet  Google Scholar 

  19. C. Berg and G. Valent, “The Nevanlinna parameterization for some indeterminate Stieltjes moment problems associated with birth and death processes,” Methods Appl. Anal. 1 (1994), 169–209.

    MathSciNet  MATH  Google Scholar 

  20. B.C. Berndt, Ramanujan’s Notebooks, Part II, Springer-Verlag, New York, 1989.

    Google Scholar 

  21. B.C. Berndt, Ramanujan’s Notebooks, Part III, Springer-Verlag, New York, 1991.

    Google Scholar 

  22. B.C. Berndt, “Ramanujan’s theory of theta-functions,” In: Theta Functions From the Classical to the Modern (M. Ram Murty, ed.), Vol. 1 of CRM Proceedings and Lecture Notes, American Mathematical Society, Providence, RI, 1993, 1–63.

    Google Scholar 

  23. B.C. Berndt, Ramanujan’s Notebooks, Part V, Springer-Verlag, New York, 1998.

    Google Scholar 

  24. B.C. Berndt, “Fragments by Ramanujan on Lambert Series,” In: Number Theory and Its Applications (K. Gyôry and S. Kanemitsu, eds.), Vol. 2 of Dev. Math., Kluwer Academic Publishers, Dordrecht, 1999, pp. 35–49.

    Google Scholar 

  25. M. Bhaskaran, “A plausible reconstruction of Ramanujan’s proof of his formula for û4s(q)”. In: Ananda Rau Memorial Volume, Publications of the Ramanujan Institute, No. 1., Ramanujan Institute, Madras, 1969, pp. 25–33.

    Google Scholar 

  26. M.N. Bleicher and M.I. Inopp, “Lattice points in a sphere,” Acta Arith. 10 (1965), 369–376.

    MathSciNet  MATH  Google Scholar 

  27. F. van der Blij[i], ‘The function x{n} of S. RamanujanMath. Student 18 (1950), 83–99.

    Google Scholar 

  28. J.M. Borwein and P.B. Borwein, Pi and the AGM, John Wiley and Sons, New York, 1987.

    MATH  Google Scholar 

  29. D.M. Bressoud, “Proofs and confirmations. The story of the alternating sign matrix conjecture,” In: MAA Spectrum, Mathematical Association of America, Washington, DC/Cambridge University Press, Cambridge, 1999, pp. 245–256.

    Google Scholar 

  30. D.M. Bressoud and J. Propp, “How the alternating sign matrix conjecture was solved,” Notices Amer. Math. Soc. 46 (1999), 637–646.

    MathSciNet  MATH  Google Scholar 

  31. C. Brezinski, History of Continued Fractions and Padé Approximants, Vol. 12 of Springer Series in Computational Mathematics, Springer-Verlag, New York, 1991.

    Google Scholar 

  32. D.J. Broadhurst, “On the enumeration of irreducible fold Euler sums and their roles in knot theory and field theory,” J. Math. Phys., to appear.

    Google Scholar 

  33. V. Bulygin, “Sur une application des fonctions elliptiques au problème de représentation des nombres entiers par une somme de carrés,” Bull. Acad. Imp. Sci. St. Petersbourg Ser. 8 (1914), 389–404

    MATH  Google Scholar 

  34. B. Boulyguine, “Sur la représentation d’un nombre entier par une somme de carrés,” Comptes Rendus Paris 158 (1914), 328–330.

    MATH  Google Scholar 

  35. V. Bulygin (B. Boulyguine), “Sur la représentation d’un nombre entier par une somme de camés,” Comptes Rendus Paris 161 (1915), 28–30.

    Google Scholar 

  36. J.L. Burchnall, “An algebraic property of the classical polynomials,” Proc. London Math. Soc. 1 (3) (1951), 232–240.

    MathSciNet  MATH  Google Scholar 

  37. L. Garlitz, “HanM determinants and Bernoulli numbers,” Tôhoku Math. J. 5 (2) (1954), 272–276.

    Google Scholar 

  38. L. Garlitz, “Note on sums of 4 and 6 squares,” Proc. Amer. Math. Soc. 1 (1957), 120–124.

    Google Scholar 

  39. L. Garlitz, “Some orthogonal polynomials related to elliptic functions,” Duke Math J. 27 (I960), 443–459.

    Google Scholar 

  40. L. Garlitz, “Bulygin’s method for sums of squares. The arithmetical theory of quadratic forms, I,” In: Proc. Conf, Louisiana State Univ., Baton Rouge, LA, 1972 (dedicated to Louis Joel Mordell)

    Google Scholar 

  41. L. Garlitz, “Bulygin’s method for sums of squares. The arithmetical theory of quadratic forms, I,” J. Number Theory 5 (1973), 405–412.

    MathSciNet  Google Scholar 

  42. R. Chalkley, “A persymmetric determinant,” J. Math. Anal Appl. 187 (1994), 107–117.

    MathSciNet  MATH  Google Scholar 

  43. H.H. Chan, “On the equivalence of Ramanujan’s partition identities and a connection with the Rogers- Ramanujan continued fraction,” J. Math. Anal. Appl 198 (1996), 111–120.

    MathSciNet  MATH  Google Scholar 

  44. H.H. Chan, private communication, August 1996.

    Google Scholar 

  45. K. Chandrasekharan, Elliptic Functions, Vol. 281 of Grundlehren Math. Wiss, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  46. T.S. Chihara, An Introduction to Orthogonal Polynomials, Vol. 13 of Mathematics and Its Applications Gordon and Breach, New York, 1978.

    Google Scholar 

  47. S.H. Choi and D. Gouyou-Beauchamps, “Enumération de tableaux de Young semi-standard,” In: Series Formelles et Combinatoire Algebrique: Actés du Colloque (M. Delest, G. Jacob, and P. Leroux, eds.), Université Bordeaux I, 2–4 May, 1991, pp. 229–243.

    Google Scholar 

  48. D.V. Chudnovsky and G.V. Chudnovsky, “Computational problems in arithmetic of linear differential equations. Some diophantine applications,” Number Theory New York, 1985–88 (D. and G. Chudnovsky, H. Cohn, and M. Nathanson, eds.), Vol. 1383 of Lecture Notes in Math., Springer-Verlag, New York, 1989, pp. 12–49.

    Google Scholar 

  49. D.V. Chudnovsky and G.V. Chudnovsky, “Hypergeometric and modular function identities, and new rational approximations to and continued fraction expansions of classical constants and functions,” A Tribute to Emil Grosswald: Number theory and related analysis (M. Knopp and M. Sheingorn, eds.), Vol. 143 of Contemporary Mathematics, American Mathematical Society, Providence, RI, 1993, pp. 117–162.

    Google Scholar 

  50. L. Comtet, Advanced Combinatorics, D. Reidel Pub. Co., Dordrecht-Holland/Boston-USA, 1974.

    MATH  Google Scholar 

  51. E. Conrad, “A note on certain continued fraction expansions of Laplace transforms of Dumont’s bimodular Jacobi elliptic functions,” preprint.

    Google Scholar 

  52. E. Conrad, A Handbook of Jacobi Elliptic Functions, Class notes (1996), preprint.

    Google Scholar 

  53. J.H. Conway and N.J. A. Sloane, Sphere Packings, Lattices and Groups, 3rd edn. (with additional contributions by E. Bannai, R.E. Borcherds, J. Leech, S.P. Norton, A.M. Odlyzko, R. A. Parker, L. Queen, and B.B. Venkov), Vol. 290 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York, 1999.

    Google Scholar 

  54. T.L. Curtright and C.B. Thorn, “Symmetry patterns in the mass spectra of dual string models,” Nuclear Phys. B 274 (1986), 520–558.

    MathSciNet  Google Scholar 

  55. T.W. Cusick, “Identities involving powers of persymmetric determinants,” Proc. Cambridge Philos. Soc. 65 (1969), 371–376.

    MathSciNet  MATH  Google Scholar 

  56. H. Datta, “On the theory of continued fractions,” Proc. Edinburgh Math. Soc. 34 (1916), 109–132.

    MATH  Google Scholar 

  57. P. Delsarte, “Nombres de Bell et polynômes de Charlier,” C.R. Acad. Sc. Paris (Series A) 287 (1978), 271–273.

    MathSciNet  MATH  Google Scholar 

  58. L.E. Dickson, History of the Theory of Numbers, Vol. 2, Chelsea, New York, 1966.

    Google Scholar 

  59. A.C. Dixon, “On the doubly periodic functions arising out of the curve jc3 + y3–3axy — 1,” The Quarterly Journal of Pure and Applied Mathematics 24 (1890), 167–233.

    MATH  Google Scholar 

  60. D. Dumont, “Une approche combinatoire des fonctions elliptiques de Jacobi,” Adv. in Math. 41 (1981), 1–39.

    MathSciNet  MATH  Google Scholar 

  61. D. Dumont, “Pics de cycle et dérivées partielles,” Séminaire Lotharingien de Combinatoire 13 (1985), 19 pp.

    Google Scholar 

  62. D. Dumont, “Le paramétrage de la courbe d’équation x 3 + j3 = 1” (Une introduction élémentaire aux fonctions elliptiques), preprint (May 1988).

    Google Scholar 

  63. F.J. Dyson, “Missed opportunities,” Bull Amer. Math. Soc. 15 (1972), 635–653.

    MathSciNet  Google Scholar 

  64. R. Ehrenborg, “The Hankel determinant of exponential polynomials,” Amer. Math. Monthly 107 (2000), 557–560.

    MathSciNet  MATH  Google Scholar 

  65. A. Erdélyi (with A. Magnus, F. Oberhettinger, and F. Tricomi), Higher Transcendental Functions, Bateman Manuscript Project (A. Erdélyi, ed.), Vol. II, McGraw-Hill Book Co., New York, 1953; reissued by Robert E. Krieger Pub. Co., Malabar, Florida, 1981 and 1915.

    Google Scholar 

  66. T. Estermann, “On the representations of a number as a sum of squares,” Acta Arith. 2 (1936), 47–79.

    Google Scholar 

  67. L. Euler, “De fractionibus continuis dissertatio,” Comm. Acad. Sei. Imp. St. Petersbourg 9 (1737), 98–137; reprinted in Works. 1911-. Leonhardi Euleri Opera Omnia (F. Rudio, A. Krazer, and R Stackel, eds.), Ser. I8 Vol. 14 (C. Boehm and G. Faber, eds.), B.G. Teubner, Lipsiae 1925, pp. 187–215

    Google Scholar 

  68. L. Euler, “An essay on continued fractions,” Math. Systems Theory 18 (1985), 295–328.

    MathSciNet  MATH  Google Scholar 

  69. L. Euler, “De fractionibus continuis observationes,” Comm. Acad. Sei. Imp. St. Petersbourg 11 (1739), 32–81; reprinted in Works. 1911. Leonhardi Euleri Opera Omnia (F. Rudio, A. Krazer, and P. Stackel, eds.), Ser. I, Vol. 14 (C. Boehm and G. Faber, eds.), B.G. Teubner, Lipsiae, 1925, pp. 291–349.

    Google Scholar 

  70. L. Euler, Introductio in Analysin Infinitorum, Vol. I, Marcum-Michaelem Bousquet, Lausanne, 1748; reprinted in Works. 1911-. Leonhardi Euleri Opera Omnia (F. Rudio, A. Krazer, and R Stackel, eds.), Ser. I, Vol. 8 (A. Krazer and F. Rudio, eds.), B.G. Teubner, Lipsiae, 1922, pp. 1–392, (see bibliographie on page b*); see also, Introduction to Analysis of the Infinite: Book /, Springer-Verlag, New York, 1988; translated from the Latin by John D. Blanton.

    Google Scholar 

  71. L. Euler, De transformatione serierum in fractiones continuas: ubi simul haec theoria non mediocriter amplificatur, Opuscula Analytica, t. ii, Petropoli: Typis Academiae Imperialis Scientiarum (1783–1785), 1785, pp. 138–177; reprinted in Works. 1911-. Leonhardi Euleri Opera Omnia (F. Rudio, A. Krazer, A. Speiser, and L.G. du Pasquier, eds.), Ser. I, Vol. 15 (G. Faber, ed.), B.G. Teubner, Lipsiae, 1927, pp. 661–700.

    Google Scholar 

  72. P. Flajolet, “Combinatorial aspects of continued fractions,” Discrete Math. 32 (1980), 125–161.

    MathSciNet  MATH  Google Scholar 

  73. P. Flajolet, “On congruences and continued fractions for some classical combinatorial quantities,” Discrete Math. 41 (1982), 145–153.

    MathSciNet  MATH  Google Scholar 

  74. P. Flajolet and J. Franon, “Elliptic functions, continued fractions and doubled permutations,” European J. Combin. 10 (1989), 235–241.

    MathSciNet  MATH  Google Scholar 

  75. F.G. Frobenius, “Über Relationen zwischen den Näherungsbrüchen von Potenzreihen,” J. Reine Angew. Math. 90 (1881), 1–17; reprinted in Frobenius’ Gesammelte Abhandlungen (J.-P. Serre, ed.), Vol. 2, Springer-Verlag, Berlin, 1968, pp. 47–63.

    Google Scholar 

  76. F.G. Frobenius and L. Stickelberger, “Zur Theorie der elliptischen Functionen” J. Reine Angew. Math 83 (1877), 175–179; reprinted in Frobenius’ Gesammelte Abhandlungen (J.-P. Sero, ed.), Vol. 1, Springer- Verlag, Berlin, 1968, pp. 335–339.

    Google Scholar 

  77. F.G. Frobenius and L. Stickelberger, “Über die Addition und Multiplication der elliptischen Functionen,” J. Reine Angew. Math, 11 (1880), 146–184; reprinted in Frobenius’ Gesammelte Abhandlungen (J.-P. Sero, ed.), Vol. 1, Springer-Verlag, Berlin, 1968, pp. 612–650.

    Google Scholar 

  78. M. Fulmek and C. Krattenthaler, “The number of rhombus tilings of a symmetric hexagon which contain a fixed rhombus on the symmetry axis, II” European J. Combin. 21 (2000), 601–640.

    MathSciNet  MATH  Google Scholar 

  79. H. Garland, “Dedekind’s q-function and the cohomology of infinite dimensional Lie algebras,” Proc. Nat. Acad. Sei., U.S.A. 72 (1975), 2493–2495.

    MathSciNet  MATH  Google Scholar 

  80. H. Garland and J. Lepowsky, “Lie algebra homology and the Macdonald-Kac formulas,” Invent. Math. 34 (1976), 37–76.

    MathSciNet  MATH  Google Scholar 

  81. F. Garvan, private communication, March 1997.

    Google Scholar 

  82. G. Gasper and M. Rahman, “Basic hypergeometric series,” In: Encyclopedia of Mathematics and its Applications, Vol. 35 ( G.-C. Rota, ed.), Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  83. J. Geronimus, “On some persymmetric determinants,” Proc. Roy. Soc. Edinburgh 50 (1930), 304–309.

    Google Scholar 

  84. J. Geronimus, “On some persymmetric determinants formed by the polynomials of M. Appell,” J. London Math. Soc. 6 (1931), 55–59.

    MathSciNet  Google Scholar 

  85. I. Gessel and G. Viennot, “Binomial determinants, paths, and hook length formulae,” Adv. in Math. 58 (1985), 300–321.

    MathSciNet  MATH  Google Scholar 

  86. F. Gesztesy and R. Weikard, “Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies-An analytic approach,” Bull. Amer. Math. Soc. (N.S.) 35 (1998), 271–317.

    MathSciNet  MATH  Google Scholar 

  87. J.W.L. Glaisher, “On the square of the series in which the coefficients are the sums of the divisors of the exponents,” Mess. Math., New Series 14 (1884–85), 156–163; reprinted in J.W.L. Glaisher, Mathematical Papers, Chiefly Connected with the #-series in Elliptic Functions (1883–1885), Cambridge, W. Metcalfe and Son, Trinity Street, 1885, pp. 371–379.

    Google Scholar 

  88. J.W.L. Glaisher, “On the numbers of representations of a number as a sum of 2r squares, where 2r does not exceed eighteen”. Proc. London Math. Soc. 5 (2) (1907), 479–490.

    MathSciNet  MATH  Google Scholar 

  89. J.W.L. Glaisher, “On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares,” Quart J. Pun andAppl. Math. Oxford 38 (1907), 1–62.

    Google Scholar 

  90. J.W.L. Glaisher, “On the representations of a number as the sum of fourteen and sixteen squares,” Quart. J. Pure and Appt. Math. Oxford 17 (1907), 178–236.

    Google Scholar 

  91. J.W.L. Glaisher, “On the representations of a number as the sum of eighteen squares,” Quart. J. Pure and Appl. Math. Oxford 17 (1907), 289–351.

    Google Scholar 

  92. M.L. Glasser, private communication, April 1996.

    Google Scholar 

  93. M.L. Glasser and I.J. Zucker, Lattice Sums, Vol. 5 of Theoretical Chemistry: Advances and Perspectives (H. Eyring and D. Henderson, eds.), Academic Press, New York, 1980, pp. 67–139.

    Google Scholar 

  94. H.W. Gould, “Explicit formulas for Bernoulli numbers,” Amer. Math. Monthly 79 (1972), 44–51.

    MathSciNet  MATH  Google Scholar 

  95. I.P. Goulden and D.M. Jackson, Combinatorial Enumeration, John Wiley and Sons, New York, 1983.

    MATH  Google Scholar 

  96. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, 4th edn., Academic Press, San Diego, 1980; translated from the Russian by Scripta Technica, Inc., and edited by A. Jeffrey.

    Google Scholar 

  97. E. Grosswald, Representations of Integers as Sums of Squares, Springer-Verlag, New York, 1985.

    MATH  Google Scholar 

  98. K.-B. Gundlach, “On the representation of a number as a sum of squares,” Glasgow Math. J. 19 (1978), 173–197.

    Google Scholar 

  99. R.A. Gustafson, “The Macdonald identities for affine root systems of classical type and hypergeometric series very well-poised on semi-simple Lie algebras,” In: Ramanujan International Symposium on Analysis, Pune, India, Dec. 26–28, 1987 ( N.K. Thakare, ed. ), 1989, pp. 187–224.

    Google Scholar 

  100. G.-N. Han, A. Randrianarivony, and J. Zeng, “Un autre q-analogue des nombres d’Euler,” Séminaire Lotharingien de Combinatoire 42 (1999), 22 pp.

    MathSciNet  Google Scholar 

  101. G.-N. Han and J. Zeng, q-Polynômes de Ghandi et statistique de Denert,“ Discrete Math. 205 (1999), 119–143.

    MathSciNet  MATH  Google Scholar 

  102. G.H. Hardy, “On the representation of a number as the sum of any number of squares, and in particular of five or seven,” Proc. Nat. Acad. Sci., U.S.A. 4 (1918), 189–193.

    Google Scholar 

  103. G.H. Hardy, “On the representation of a number as the sum of any number of squares, and in particular of five,” Trans. Amer. Math. Soc. 21 (1920), 255–284.

    MathSciNet  MATH  Google Scholar 

  104. G.H. Hardy, Ramanujan, Cambridge University Press, Cambridge 1940; reprinted by Chelsea, New York, 1978; reprinted by AMS Chelsea, Providence, RI, 1999; Now distributed by The American Mathematical Society, Providence, RI.

    Google Scholar 

  105. G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, 5th edn., Oxford University Press, Oxford, 1979.

    MATH  Google Scholar 

  106. J.B.H, Heilermann, “De tranifermatione serierum in fractionei continuas” Dr. Phil. Dissertation, Royal Academy of Munster, 1845.

    Google Scholar 

  107. J.B.H. Heilermann, “Uber die Verwandlung der Reihen in Kettenbruche,” J. Reine Angew. Math. 33 (1846), 174–188.

    Google Scholar 

  108. H. Helfgott and I.M. Gessel, “Enumeration of tilings of diamonds and hexagons with defects,” Electron. J. Combin. 6 (1999), 26 pp.

    MathSciNet  Google Scholar 

  109. E. Hendriksen and H. Van Rossum, “Orthogonal moments,” Rocky Mountain J. Math. 21 (1991), 319–330.

    MathSciNet  MATH  Google Scholar 

  110. L.K. Hua, Introduction to Number Theory, Springer-Verlag, New York, 1982.

    MATH  Google Scholar 

  111. J.G. Huard, Z.M. Ou, B.K. Spearman, and K.S. Williams, “Elementary evaluation of certain convolution sums involving divisor functions,” In: Number Theory for the Millennium (M.A. Bennett, B.C. Berndt, N. Boston, H.G. Diamond, A.J. Hildebrand, and W. Philipp, eds.), Vol. 2, A.K. Peters, Natick, MA, to appear.

    Google Scholar 

  112. M.E.H. Ismail, J. Letessier, G. Valent, and J. Wimp, “Two families of associated Wilson polynomials,” Canad. J. Math. 42 (1990), 659–695.

    MathSciNet  MATH  Google Scholar 

  113. M.E.H. Ismail and D.R. Masson, “Generalized orthogonality and continued fractions,” J. Approx. Theory 83 (1995), 1–40.

    MathSciNet  MATH  Google Scholar 

  114. M.E.H. Ismail and D.R. Masson, “Some continued fractions related to elliptic functions,” Continued Fractions: From Analytic Number Theory to Constructive Approximation, Columbia, MO, 1998 (B.C. Berndt and F. Gesztesy, eds.), Vol. 236 of Contemporary Mathematics, American Mathematical Society, Providence, RI, 1999, 149–166.

    Google Scholar 

  115. M.E.H. Ismail and M. Rahman, “The associated Askey-Wilson polynomials,” Trans. Amer. Math. Soc. 328 (1991), 201–237.

    MathSciNet  MATH  Google Scholar 

  116. M.E.H. Ismail and D. Stanton, “Classical orthogonal polynomials as moments,” Canad. J. Math. 49 (1997), 520–542.

    MathSciNet  MATH  Google Scholar 

  117. M.E.H. Ismail and D. Stanton, “More orthogonal polynomials as moments,” Mathematical Essays in Honor of Gian-Carlo Rota, Cambridge, MA, 1996 (B.E. Sagan and R.P. Stanley, eds.), Vol. 161 of Progress in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1998, pp. 377–396.

    Google Scholar 

  118. M.E.H. Ismail and G. Valent, “On a family of orthogonal polynomials related to elliptic functions,” Illinois J. Math. 42 (1998), 294–312.

    MathSciNet  MATH  Google Scholar 

  119. M.E.H. Ismail, G. Valent, and G. Yoon, “Some orthogonal polynomials relate! to elliptic functions,” J. Approx. Theory 112 (2001), 251–278.

    MathSciNet  MATH  Google Scholar 

  120. C.G.J. Jacobi, “Fundamenta Nova Theoriae Functionum Ellipticarum,” Regiomonti. Sumptibus fratrum Bornträger, 1829; reprinted in Jacobi’s Gesammelte Werke, Vol. 1, Reimer, Berlin, 1881–1891, pp. 49–239; reprinted by Chelsea, New York, 1969; Now distributed by The American Mathematical Society, Providence, RI.

    Google Scholar 

  121. N. Jacobson, Basic Algebra I, W.H. Freeman and Co., San Francisco, CA, 1974.

    MATH  Google Scholar 

  122. W.B. Jones and W.J. Thron, “Continued Fractions: Analytic Theory and Applications,” In: Encyclopedia of Mathematics and Its Applications, Vol. 11 ( G.-C. Rota, ed.), Addison-Wesley, London, 1980; Now distributed by Cambridge University Press, Cambridge.

    Google Scholar 

  123. V.G. Kac and M. Wakimoto, “Integrable highest weight modules over affine superalgebras and number theory,” In: Lie Theory and Geometry, in honor of Bertram Kostant (J.L. Brylinski, R. Brylinski, V. Guillemin and V. Kac, eds.), Vol. 123 of Progress in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1994, pp. 415–456.

    Google Scholar 

  124. V.G. Kac and M. Wakimoto, “Integrable highest weight modules over affine superalgebras and Appell’s function,” Comm. Math. Phys. 215 (2001), 631–682.

    MathSciNet  MATH  Google Scholar 

  125. S. Karlin and G. Szegô, “On certain determinants whose elements are orthogonal polynomials,” J. Analyse Math. 8 (1961), 1–157; reprinted in Gabor Szegö: Collected Papers, Vol. 3 (R. Askey, ed.), Birkhäuser Boston, Inc., Boston, MA, 1982, pp. 603–762.

    Google Scholar 

  126. M.I. Knopp, “On powers of the theta-function greater than the eighth,” Acta Arith. 46 (1986), 271–283.

    MathSciNet  MATH  Google Scholar 

  127. R. Koekoek and R.F. Swarttouw, “The Askey-scheme of hypergeometric orthogonal polynomiall and its q-analogue,” TU Delft, The Netherlands, 1998; available on the www: ftp://ftp.twi.tudalft.nl/TWI/publications/ tech-reports/1998/DUT-TWI-98–17.ps.gz.

    Google Scholar 

  128. C. Krattenthaler, “Advanced determinant calculus,” Séminaire Lotharingien de Combinatoire 42 (1999), 67 pp.

    MathSciNet  Google Scholar 

  129. E. Krätzel, “Über die Anzahl der Darstellungen von natürlichen Zahlen als Summe von 4k Quadraten,” Wiss. Z. Friedrich-Schiller-Univ. Jena 10 (1961), 33–37.

    MathSciNet  Google Scholar 

  130. E. Krätzel, “Über die Anzahl der Darstellungen von natürlichen Zahlen als Summe von 4k + 2 Quadraten,” Wiss. Z. Friedrich-Schiller-Univ. Jena 11 (1962), 115–120.

    MathSciNet  Google Scholar 

  131. D.B. Lahiri, “On a type of series involving the partition function with applications to certain congruence relations,” Bull. Calcutta Math. Soc. 38 (1946), 125–132.

    MathSciNet  MATH  Google Scholar 

  132. D.B. Lahiri, “On Ramanujan’s function r(n) and the divisor function ok(n)-I,” Bull. Calcutta Math. Soc. 38 (1946), 193–206.

    MathSciNet  MATH  Google Scholar 

  133. D.B. Lahiri, “On Ramanujan’s function r (n) and the divisor function cr(n)-II,” Bull. Calcutta Math. Soc. 39 (1947), 33–52.

    MathSciNet  MATH  Google Scholar 

  134. D.B. Lahiri, “Identities connecting the partition, divisor and Ramanujan’s functions,” Proc. Nat. Inst. Sci. India 34A (1968), 96–103.

    MATH  Google Scholar 

  135. D.B. Lahiri, “Some arithmetical identities for Ramanujan’s and divisor functions,” Bull. Austral. Math. Soc. 1 (1969), 307–314.

    MathSciNet  MATH  Google Scholar 

  136. A. Lascoux, “Inversion des matrices de Hankel,” Linear Algebra Appl. 129 (1990), 77–102.

    MathSciNet  MATH  Google Scholar 

  137. D.F. Lawden, Elliptic Functions and Applications,Vol. 80 of Applied Mathematical Sciences, Springer-Verlag, New York, 1989

    Google Scholar 

  138. B. Leclerc, “On identities satisfied by minors of a matrix,” Adv. in Math 100 (1993), 101–132.

    MathSciNet  MATH  Google Scholar 

  139. B. Leclerc, “Powers of staircase Schur functions and symmetric analogues of Bessel polynomials,” Discrete Math. 153 (1996), 213–227.

    MathSciNet  MATH  Google Scholar 

  140. B. Leclerc, Private communication, July 1997.

    Google Scholar 

  141. B. Leclerc, “On certain formulas of Karlin and Szeg6,” Séminaire Lotharingien de Combinatoire 41 (1998), 21 pp.

    MathSciNet  Google Scholar 

  142. A.M. Legendre, “Traité des Functions Elliptiques et des Intégrales Euleriennes,” t. III, Huzard-Courcier, Paris, 1828, pp. 133–134.

    Google Scholar 

  143. D.H. Lehmer, “Some functions of Ramanujan,” Math. Student 27 (1959), 105–116.

    MathSciNet  Google Scholar 

  144. J. Lepowsky, “Generalized Verma modules, loop space cohomology and Macdonald-type identities,” Ann. Sci. École Norm. Sup. 12 (4) (1979), 169–234.

    MathSciNet  Google Scholar 

  145. J. Lepowsky, “Affine Lie algebras and combinatorial identities,” In: Lie Algebras and Related Topics, Rutgers Univ, Press., New Brunswick, N.J., 1981, Vol. 933 of Lecture Notes in Math., Springer-Verlag, Berlin 1982, pp. 130–156.

    Google Scholar 

  146. G.M. Lilly and S.C. Milne, “The Ct Bailey Transform and Bailey Lemma,” Constr. Approx. 9 (1993), 473–500.

    MathSciNet  MATH  Google Scholar 

  147. J. Liouville, “Extrait d’une lettre à M. Besge,” J. Math. Pures AppL 9 (2) (1864), 296–298.

    Google Scholar 

  148. DE. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, 2nd edn., Oxford University Press. Oxford, 1958.

    Google Scholar 

  149. Z.-G. Liu, “On the representation of integers as sums of squares,” In: q-Series with Applications to Conthinatorics, Number Theory, and Physics (B.C. Berndt and Ken Ono, eds.), Vol. 291 of Contemporary Mathematics, American Mathematical Society, Providence, RI, 2001, pp. 163–176.

    Google Scholar 

  150. G.A. Lomadze, “On the representation of numbers by sums of squares,” Akad. Nauk Gruzin. SSR Trudy Tbiliss. Mat. Inst. Razmadze 16 (1948), 231–275.

    MathSciNet  Google Scholar 

  151. J.S. Lomont and J.D. Brillhart, Elliptic Polynomials, Chapman and HalUCRC Press, Boca Raton, FL, 2000.

    Google Scholar 

  152. L. Lorentzen and H. Waadeland, Continued Fractions With Applications, Vol. 3 of Studies in Computational Mathematics, North-Holland, Amsterdam, 1992.

    MATH  Google Scholar 

  153. J. Lützen, “Joseph Liouville 1809–1882: Master of pure and applied mathematics,” In: Studies in the History of Mathematics and Physical Sciences, Vol. 15, Springer-Verlag, New York, 1990.

    Google Scholar 

  154. I.G. Macdonald, “Affine root systems and Dedekind’s n-function,” Invent. Math. 15 (1972), 91–143.

    MathSciNet  MATH  Google Scholar 

  155. I.G. Macdonald, “Some conjectures for root systems,” SIAM J. Math. Anal. 13 (1982), 988–1007.

    MathSciNet  MATH  Google Scholar 

  156. I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edn., Oxford University Press, Oxford, 1995.

    MATH  Google Scholar 

  157. G.B. Mathews, “On the representation of a number as a sum of squares,” Proc. London Math. Soc. 27 (1895–96), 55–60.

    Google Scholar 

  158. H. McKean and V. Moll, Elliptic Curves: Function Theory, Geometry, Arithmetic, Cambridge University Press, Cambridge, 1997.

    MATH  Google Scholar 

  159. M.L. Mehta, Elements of Matrix Theory, Hindustan Publishing Corp., Delhi, 1977.

    Google Scholar 

  160. M.L. Mehta, “Matrix theory: Selected topics and useful results,” Les Editions de Physique,Les Ulis, France, 1989; see Appendix A.5 (In India, sold and distributed by Hindustan Publishing Corp.).

    Google Scholar 

  161. S.C. Milne, “An elementary proof of the Macdonald identities for A,” Adv. in Math. 57 (1985), 34–70.

    MathSciNet  MATH  Google Scholar 

  162. S.C. Milne, “Basic hypergeometric series very well-poised in U(n),” J. Math. Anal, Appl. 122 (1987), 223–256.

    MathSciNet  MATH  Google Scholar 

  163. S.C. Milne, “Classical partition functions and the U(n + 1) Rogers-Selberg identity,” Discrete Math. 99 (1992), 199–246.

    MathSciNet  MATH  Google Scholar 

  164. S.C. Milne, “The Ct Rogers-Selberg identity,” SIAM. J. Math. Anal. 25 (1994), 571–595.

    MathSciNet  MATH  Google Scholar 

  165. S.C. Milne, “New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function,” Proc. Nat. Acad. Sci., U.S.A. 93 (1996), 15004–15008.

    MathSciNet  MATH  Google Scholar 

  166. S.C. Milne, “Balanced 302 summation theorems for U (n) basic hypergeometric series,” Adv. in Math. 131 (1997), 93–187.

    MathSciNet  MATH  Google Scholar 

  167. S.C. Milne, “Hankel determinants of Eisenstein series,” In: Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics, Gainesville, 1999 (EG. Garvan and M. Ismail, eds.), Vol. 4 of Dev. Math., Kluwer Academic Publishers, Dordrecht, 2001, pp. 171–188.

    Google Scholar 

  168. S.C. Milne, “A new formula for Ramanujan’s tau function and the Leech lattice,” in preparation

    Google Scholar 

  169. S.C. Milne, ‘Continued fractions, Hankel determinants, and further identities for powers of classical theta functions,“ in preparation.

    Google Scholar 

  170. S.C. Milne, “Sums of squares, Schur functions, and multiple basic hypergeometric series,” in preparation.

    Google Scholar 

  171. S.C. MiMe and G.M. Lilly, “The At and Ce Bailey transform and lemma,” Bull. Amer Math. Sac. (N.S.) 26 (1992), 258–263.

    Google Scholar 

  172. S.C. MiMe and G.M. Lilly, “Consequences of the At and Ce Bailey transform and Bailey lemma,” Discrete Math. 139 (1995), 319–346.

    MathSciNet  Google Scholar 

  173. S.C. Mitra, “On the expansion of the Weierstrassian and Jacobian elliptic functions in powers of the argument,” Bull. Calcutta Math. Soc. 17 (1926), 159–172.

    MATH  Google Scholar 

  174. L.J. Mordell, “On Mr. Ramanujan’s empirical expansions of modular functions,” Proc. Cambridge Philos. Soc. 19 (1917), 117–124.

    MATH  Google Scholar 

  175. L.J. Mordell, “On the representation of numbers as the sum of 2r squares,” Quart. J. Pure and App!. Math. Oxford 48 (1917), 93–104.

    Google Scholar 

  176. L.J. Mordell, “On the representations of a number as a sum of an odd number of squares,” Trans. Cambridge Philos. Soc. 22 (1919), 361–372.

    Google Scholar 

  177. T. Muir, “New general formulae for the transformation of infinite series into continued fractions,” Trans. Roy. Soc. Edinburgh 27 (1876), 467–471.

    MATH  Google Scholar 

  178. T. Muir, “On the transformation of Gauss’ hypergeometric series into a continued fraction,” Proc. London Math. Soc. 7 (1876), 112–119.

    MathSciNet  MATH  Google Scholar 

  179. T. Muir, “On Eisenstein’s continued fractions,” Trans. Roy. Soc. Edinburgh 28 (1877), 135–143.

    MATH  Google Scholar 

  180. T. Muir, The Theory of Determinants in the Historical Order of Development, Vol. 1(1906), Vol. 11 (1911), Vol. III (1920), Vol. IV (1923), Macmillan and Co., Ltd., London.

    Google Scholar 

  181. T. Muir, “The theory of persymmetric determinants in the historical order of development up to 1860,” Proc. Roy. Soc. Edinburgh 30 (1910), 407–431.

    MATH  Google Scholar 

  182. T. Muir, “The theory of persymmetric determinants from 1894 to 1919,” Proc. Roy. Soc. Edinburgh 47 (1927), 11–33.

    MATH  Google Scholar 

  183. T. Muir, Contributions to the History of Determinants 1900–1920, Blackie and Son, London and Glasgow. 1930.

    MATH  Google Scholar 

  184. T. Muir, A Treatise on the Theory of Determinants, Dover Publications, New York, 1960.

    Google Scholar 

  185. M.B. Nathanson, Elementary Methods in Number Theory, Vol. 195 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2000.

    MATH  Google Scholar 

  186. K. Ono, “Representations of integers as sums of squares,” J. Number Theory,to appear.

    Google Scholar 

  187. K. Ono, S. Robins, and P.T. Wahl, “On the representation of integers as sums of triangular numbers,” Aequationes Math. 50 (1995), 73–94.

    MathSciNet  MATH  Google Scholar 

  188. O, Perron, Die Lehre von den Kettenbriichen, 2nd edn., B.G. Teubner, Leipzig and Berlin, 1929; reprinted by Chelsea, New York, 1950.

    Google Scholar 

  189. Von K. Petr, “Ober die Anzahl der Darstellungen einer Zahl als Summe von zehn und zwölf Quadraten,” Archly Math. Phys. 11 (3) (1907), 83–85.

    Google Scholar 

  190. B. van der Pol, “The representation of numbers as sums of eight, sixteen and twenty-four squares,” Nederl. Akad. Wetensch. Proc. Ser A 57 (1954), 349–361

    MATH  Google Scholar 

  191. B. van der Pol, “The representation of numbers as sums of eight, sixteen and twenty-four squares,” Nederl. Akad. Wetensch. Indag. Math. 16 (1954), 349–361.

    Google Scholar 

  192. G. Prasad, An Introduction to the Theory of Elliptic Functions and Higher Transcendentals, University of Calcutta, 1928.

    Google Scholar 

  193. H. Rademacher, Topics in Analytic Number Theory, Vol. 169 of Grundlehren Math. Wiss., Springer-Verlag, New York, 1973.

    MATH  Google Scholar 

  194. Ch. Radoux, “Calcul effectif de certains déterminants de Hankel,” Bull. Soc. Math. Belg. Sir 31 (1979), 49–55.

    MathSciNet  MATH  Google Scholar 

  195. Ch. Radoux, “Déterminant de Hankel construit sur les polynômes de Hérmite,”Ann. Soc.. Sci. Bruxelles Ser I 104 (1990), 59–61.

    MathSciNet  MATH  Google Scholar 

  196. Ch. Radoux, “Déterminant de Hankel construit sur des polynômes liés aux nombres de dérangements,” European J. Cambia. 12 (1991), 327–329.

    MathSciNet  MATH  Google Scholar 

  197. Ch. Radoux, “Déterminants de Hankel et théorème de Sylvester,” Actes de la 28e session du Séminaire Lotharingien de Combinatoire, publication de l’I.R.M.A. No. 498/S-28, Strasbourg, 1992, pp, 115–122.

    Google Scholar 

  198. S. Ramanujan, “On certain arithmetical functions,” Trans. cxmomdg,phims. Soc. 22 (1916), 159–184; reprinted in Collecte Papers vyxm,*osa Ramanujan, Chelsea, New York, 1962, pp. 136–162; reprinted by AMS Chelsea, Providence, RI, 2000; Now distributed by The American Mathematical Society, Providence, RI.

    Google Scholar 

  199. S. Ramanujan, The Lost Noteboo and Othe Unpublished Papers, Narosa, New Delhi, 1988.

    Google Scholar 

  200. A. Randrianarivony, “Fractions continues, combinatoire et extensions de nombres classiques,” Ph.D. Thesis, Univ. Louis Pasteur, Strasbourg, France, 1994.

    Google Scholar 

  201. A. Randrianarivony, “Fractions continues, q-nombres de Catalan et q-polynômes de Genocchi,” European J. Combin. 18 (1997), 75–92.

    MathSciNet  MATH  Google Scholar 

  202. A. Randrianarivony, q, p-analogue des nombres de Catalan,“ Discrete Math. 178 (1998), 199–211.

    MathSciNet  MATH  Google Scholar 

  203. A. Randrianarivony and J.A. Zeng, “Extension of Euler numbers and records of up-down permutations,” J. Combin. Theory Ser. A 68 (1994), 86–99.

    MathSciNet  MATH  Google Scholar 

  204. A. Randrianarivony and J. Zeng, “A family of polynomials interpolating several classical series of numbers,” Adv. in Appl. Math. 17 (1996), 1–26.

    MathSciNet  MATH  Google Scholar 

  205. R.A. Rankin, “On the representations of a number as a sum of squares and certain related identities,” Proc. Cambridge Philos. Soc. 41 (1945), 1–11.

    MathSciNet  MATH  Google Scholar 

  206. R.A. Rankin, “On the representation of a number as the sum of any number of squares, and in particular of twenty,” Acta Arith. 7 (1962), 399–437.

    MathSciNet  MATH  Google Scholar 

  207. R.A. Rankin, “Sums of squares and cusp forms,” Amer. J. Math. 87 (1965), 857–860.

    MathSciNet  MATH  Google Scholar 

  208. R.A. Rankin, Modular Forms and Functions, Cambridge University Press, Cambridge, 1977.

    MATH  Google Scholar 

  209. D. Redmond, Number Theory: An Introduction, Marcel Dekker, New York, 1996.

    MATH  Google Scholar 

  210. D.P Robbins, “Solution to problem 10387 *,” Amer. Math. Monthly 104 (1997), 366–367.

    MathSciNet  Google Scholar 

  211. L.J. Rogers, “On the representation of certain asymptotic series as convergent continued fractions,” Proc. London Math. Soc 4 (2) (1907), 72–89.

    Google Scholar 

  212. A. Schett, “Properties of the Taylor series expansion coefficients of the Jacobian elliptic functions,” Math. Comp. 30 (1976), 143–147, with microfiche supplement (See also: “Corrigendum,” Math. Comp. 31 (1977), 330 ).

    MathSciNet  Google Scholar 

  213. A. Schett, “Recurrence formula of the Taylor series expansion coefficients of the Jacobian elliptic functions,” Math. Comp. 31 (1977), 1003–1005.

    MathSciNet  MATH  Google Scholar 

  214. W. Seidel, “Note on a persymmetric determinant,” Quart. J. Math., Oxford Ser. 4 (2) (1953), 150–151.

    MathSciNet  MATH  Google Scholar 

  215. J.-P. Serre, A Course in Arithmetic, Vol. 7 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1973.

    MATH  Google Scholar 

  216. W. Sierpinski, “Wzör analityczny na pewna funkcje liczbowa (Une formule analytique pour une fonction numérique),” Wiadomosci Matematyczne Warszawa 11 (1907), 225–231.

    MATH  Google Scholar 

  217. H.J.S. Smith, Report on the Theory of Numbers, Part VI (Report of the British Association for 1865, pp. 322–375), 1894; reprinted in The Collected Mathematical Papers of H.J.S. Smith, Vol. 1 (J.W.L. Glaisher, ed.), 1894, pp. 306–311; reprinted by Chelsea, New York, 1965.

    Google Scholar 

  218. H.J.S. Smith, “On the orders and genera of quadratic forms containing more than 3 indeterminates,” Proc. Roy. Soc. London 16 (1867), 197–208; reprinted in The Collected Mathematical Papers of H.J.S. Smith, Vol. 1 (J.W.L. Glaisher, ed.), 1894, pp. 510–523; reprinted by Chelsea, New York, 1965.

    Google Scholar 

  219. R.P Stanley, Enumerative Combinatorics, Vol. I, Wadsworth and Brooks Cole, Belmont, CA, 1986.

    MATH  Google Scholar 

  220. M.A. Stern, “Theorie der Kettenbrüche und ihre Anwendung,” J. Reine Angew. Math. 10 (1833), 1–22, 364–376.

    Google Scholar 

  221. M.A. Stern, “Theorie der Kettenbrüche und ihre Anwendung,” J. Reine Angew. Math. 11 (1834), 33–66, 311–350.

    MATH  Google Scholar 

  222. T.J. Stieltjes, “Sur la réduction en fraction continue d’une série procédant suivant les puissances descendantes d’une variable,” Ann. Fac. Sei. Toulouses (1889), H. 1–17; reprinted in Euvres Complètes T2, P. Noordhoff, Groningen, 1918, pp. 184–200; see also Euvres Complètes Collected Papers J, Vol. II (G. van Dijk, ed.), Springer-Verlag, Berlin, 1993, pp. 188–204.

    Google Scholar 

  223. T.J. Stieltjes, “Sur quelques intégrales définies et leur développement en fractions continues,” Quart. J. Math. 24 (1890), 370–382; reprinted in Euvres Complètes T2, P. Noordhoff, Groningen, 1918, pp. 378–391; see also Œuvres Complètes (Collected Papers) Vol. II (G. van Dijk, ed.), Springer-Verlag, Berlin, 1993, pp. 382–395.

    Google Scholar 

  224. T. J. Stieltjes, “Recherches sur les fractions continues,’Ann. Fac. Sei. Toulouse 8 (1894), J. 1–122,9 (1895), A. 1–47; reprinted in Œuvres ComplètesT2, P. Noordhoff, Groningen, 1918, pp. 402–566; (see pp. 549–554); see also Œuvres Complètes (Collected Papers), Vol. II (G. van Dijk, ed.), Springer-Verlag, Berlin, 1993, pp. 406–570 (see also pp. 609–745 for an English translation. Note especially pp. 728–733).

    Google Scholar 

  225. O. Szâsz, “Über Hermitesche Formen mit rekurrierender Determinante und über rationale Polynome,” Math. Z. 11 (1921), 24–57.

    MathSciNet  MATH  Google Scholar 

  226. G. Szegô, “On an inequality of Turân concerning Legendre polynomials,” Bull. Amer. Math. Soc. 54 (1948), 401–405; reprinted in Gabor Szegö: Collected Papers, Vol. 3,1945–1972 (R. Askey, ed.), Birkhäuser Boston, Inc., Boston, MA, 1982, pp. 69–73, 74–75.

    Google Scholar 

  227. O. Taussky, “Sums of squares,” Amer. Math. Monthly 77 (1970), 805–830.

    MathSciNet  MATH  Google Scholar 

  228. J. Touchard, “Sur un problème de configurations et sur les fractions continues,” Canad. J. Math. 4 (1952), 2–25.

    MathSciNet  MATH  Google Scholar 

  229. P. Turân, “On the zeros of the polynomials of Legendre,” C’asopis pro Pestovdm Matematiky a Fysiky 75 (1950), 113–122.

    MATH  Google Scholar 

  230. H.W. Turnbull, The Theory of Determinants, Matrices, and Invariants, Blackie and Son, London, 1928; reprinted by Dover Publications, New York, 1960.

    Google Scholar 

  231. J. V. Uspensky, “Sur la représentation des nombres par les sommes des carrés,” Communications de la Société mathématique de Kharkow série 214 (1913), 31–64.

    Google Scholar 

  232. J.V. Uspensky, “Note sur le nombre de représentations des nombres par une somme d’un nombre pair de carrés,” Bulletin de VAcadémie des Sciences de l’URSS, Leningrad (Izvestija Akademii Nauk Sojuza Sovet-skich Respublik. Leningrad.) Serie 619 (1925), 647–662.

    Google Scholar 

  233. J.V. Uspensky, “On Jacobi’s arithmetical theorems concerning the simultaneous representation of numbers by two different quadratic forms,” Trans. Amer. Math. Soc. 30 (1928), 385–404.

    MathSciNet  MATH  Google Scholar 

  234. J.V. Uspensky and M.A. Heaslet, Elementary Number Theory, McGraw-Hill, New York, 1939.

    Google Scholar 

  235. G. Valent, “Asymptotic analysis of some associated orthogonal polynomials connected with elliptic functions,” SIAMJ. Math. Amt 25 (1994), 749–775.

    MathSciNet  MATH  Google Scholar 

  236. G. Valent, “Associated Stieltjes-Carlitz polynomials and a generalization of Heun’s differential equation,” J. Comput. Appl. Math. 57 (1995), 293–307.

    MathSciNet  MATH  Google Scholar 

  237. G. Valent and W. Van Assche, “The impact of Stieltjes’ work on continued fractions and orthogonal polynomials: Additional material,” J. Comput. Appl. Math. 65 (1995), 419–447; this volume was devoted to the Proceedings of the International Conference on Orthogonality, Moment Problems and Continued Fractions (Delft, 1994 ).

    Google Scholar 

  238. W. Van Assche, “Asymptotics for orthogonal polynomials and three-term recurrences,” In: Orthogonal Polynomials: Theory and Practice (P. Nevai, ed.), Vol. 294 of NATO-ASI Series C: Mathematical and Physical Sciences, Kluwer Academic Publishers, Dordrecht, 1990, pp. 435–462.

    Google Scholar 

  239. W. Van Assche, “The impact of Stieltjes work on continued fractions and orthogonal polynomials,” Vol. I of T.J. Stieltjes: Œuvres Complètes (Collected Papers) (G. van Dijk, ed.), Springer-Verlag, Berlin, 1993, pp. 5–37.

    Google Scholar 

  240. P.R. Vein, “Persymmetric determinants. I. The derivatives of determinants with Appell function elements,” Linear and Multilinear Algebm 11 (1982), 253–265.

    MathSciNet  MATH  Google Scholar 

  241. P.R. Vein, “Persymmetric determinants. Il. Families of distinct submatrices with nondistinct determinants,” Linear and Multiliner Algera 11 (1982), 267–276

    MathSciNet  MATH  Google Scholar 

  242. P.R. Vein, “Persymmetric determinants. III. A basic determinant,” Linear and Multilinear Algebm 11 (1982), 305–315.

    MathSciNet  MATH  Google Scholar 

  243. P.R. Vein, ‘Persymmetric determinants. IV. An alternative form of the Yamazaki-Hori determìnantal solution of the Ernst equation,“ LInear and Multilinear Algebra 12 (1983), 329–339.

    MathSciNet  MATH  Google Scholar 

  244. P.R. Vein, “Persymmetric determinants. V. Families of overlapping coaxial equivalent determinants,” Linear and mmmxnour Algebra 14 (1983) 131–141.

    MathSciNet  MATH  Google Scholar 

  245. P.R. Vein and P. Dale, “Determinants, their derìvatíves and nonlinear differential” J. Math. Anal. Appl. 74 (1980). 599–63.

    MathSciNet  Google Scholar 

  246. B.A. Venkov, Elementary Number Theory,Wolters-Noordhoff Publishing, Groningen, 1970; translated from the Russian and edited by Helen Alderson (Popova).

    Google Scholar 

  247. R. Vermes, “Hankel determinants formed from successive derivatives,” Duke Matk J. 37 (1970), 255–259.

    MathSciNet  MATH  Google Scholar 

  248. G. Viennot, “Une interprétation combinatoire des coefficients des développements en série entière des fonctions elliptiques de Jacobi,” J. Combin. Theory Ser A 29 (1980), 121–133.

    MathSciNet  MATH  Google Scholar 

  249. G. Viennot, “Une théorie combinatoire des polynômes orthogonaux généraux,” in Lecture Notes, publication de l’UQAM, Montréal (1983).

    Google Scholar 

  250. G. Viennot, “A combinatorial interpretation of the quotient-difference algorithm,” Technical Report No. 8611, Université de Bordeaux I, 1986.

    Google Scholar 

  251. A Z. Walfisz, “On the representation of numbers by sums of squares: Asymptotic formulas,” Uspehi Mat. Nauk (N.S.) 52 (6) (1952), 91–178.

    Google Scholar 

  252. A Z. Walfisz, English transi, Amer Math. Soc, Transl. 3 (2) (1956), 163–248.

    MathSciNet  Google Scholar 

  253. H.S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand, New York, 1948; reprinted by Chelsea, New York, 1973.

    Google Scholar 

  254. J.B. Walton, Theta series in the Gaussian field,“ Duke Math. J. 16 (1949), 479–491.

    MathSciNet  MATH  Google Scholar 

  255. E.T. Whittaker and GN. Watson, A Course of Modern Analysis, 4th edn., Cambridge University Press, Cambridge, 1927.

    MATH  Google Scholar 

  256. S. Wolfram, The Mathematica Book, 4th edn., Wolfram Media/Cambridge University Press, Cambridge, 1999.

    MATH  Google Scholar 

  257. S. Wrigge, “Calculation of the Taylor series expansion coefficients of the Jacobian elliptic function sn(x, k),” Math. Comp. 36 (1981), 555–564.

    MathSciNet  MATH  Google Scholar 

  258. S. Wrigge, “A note on the Taylor series expansion coefficients of the Jacobian elliptic function sn(x, k),” Math. Comp. 37 (1981), 495–497.

    MathSciNet  MATH  Google Scholar 

  259. D. Zagier, “A proof of the Kac-Wakimoto affine denominator formula for the strange series,” Math. Res, Letters 7 (2000), 597–604.

    MathSciNet  MATH  Google Scholar 

  260. D. Zeilberger, “Proof of the alternating sign matrix conjecture,” Electron. J. Combin. 3 (1996), 84 pp.

    Google Scholar 

  261. D. Zeilberger, “Proof of the refined alternating sign matrix conjecture,” New York J. Math. 2 (1996), 59–68.

    MathSciNet  MATH  Google Scholar 

  262. J. Zeng, “Énumérations de permutations et J-fractions Continues,” European J. Combin. 14 (1993), 373–382.

    MathSciNet  MATH  Google Scholar 

  263. J. Zeng, “Sur quelques propriétes de symétrie des nombres de Genocchi,” Discrete Math. 153 (1996), 319–333.

    MathSciNet  MATH  Google Scholar 

  264. I. J. Zucker, “The summation of series of hyperbolic functions,” SIAM J. Math. Anal. 10 (1979), 192–206.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milne, S.C. (2002). Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions. In: Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions. Developments in Mathematics, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5462-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5462-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5213-4

  • Online ISBN: 978-1-4757-5462-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics