Skip to main content

New Insights into the Pathophysiology and Severity Assessment of Acute Pancreatitis

  • Conference paper
Intensive Care Medicine

Abstract

Acute pancreatitis is an acute sterile inflammation of the pancreas. The diagnosis is made on the basis of a distinct clinical syndrome consisting of acute onset abdominal pain radiating to the back and frequently accompanied by nausea and/or vomiting, combined with a more than threefold increase of serum amylase or lipase above the upper limit of normal. In the western world the most common causes of acute pancreatitis are alcohol abuse and gallstones [1]. The disease is characterized by the premature activation of digestive enzymes in the pancreas, followed by a massive immunological response resulting in autodigestion of the gland, local, and subsequent systemic inflammation. The incidence of the disease varies between 5–20 per 100 000 persons per year, with 10–20% of patients developing severe pancreatitis of whom up to 30% may die as a result of the development of secondary complications such as pancreatitis-associated lung injury, infectious complications or multiple organ failure (MOF) [1]. This chapter will focus on recent developments in the understanding of the pathophysiology and immunopathology of acute pancreatitis and its complications and discuss the importance of early severity prediction including the merits of various prognostic markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mergener K, Baillie J (1998) Acute pancreatitis. Br Med J 316: 44 48

    Google Scholar 

  2. Steer ML, Saluja AK (1993) Experimental pancreatitis: studies of the early events that lead to cell injury. In: Lian V, Go W, Dimagno EP, et al (eds) The Pancreas: Biology, Pathobiology and Disease. Raven Press, New York, pp 11–36

    Google Scholar 

  3. Steer ML (1999) Early events in acute pancreatitis. Baillieres Best Pract Res Clin Gastroenterol 13: 213–225

    Article  PubMed  CAS  Google Scholar 

  4. Saluja AK, Donovan EA, Yamanaka K, Yamaguchi Y, Hofbauer B, Steer ML (1997) Ceruleininduced in vitro activation of trypsinogen in rat pancreatic acini is mediated by cathepsin B. Gastroenterology 113: 304–310

    Article  PubMed  CAS  Google Scholar 

  5. Halangk W, Lerch MM, Brandt-Nedelev B, et al (2000) Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J Clin Invest 1.06: 773–781

    Google Scholar 

  6. Van Acker GJ, Saluja AK, Bhagat L, Singh VP, Song AM, Steer ML (2002) Cathepsin B inhibition prevents trypsinogen activation and reduces pancreatitis severity. Am J Physiol 283: G794 - G800

    Google Scholar 

  7. Witt H, Luck W, Hennies HC, et al (2000) Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat Genet 25: 213–216

    Article  PubMed  CAS  Google Scholar 

  8. Norman J (1998) The role of cytokines in the pathogenesis of acute pancreatitis. Am J Surg 175: 76–83

    Article  PubMed  CAS  Google Scholar 

  9. Gukovskaya AS, Gukovsky I, Zaninovic V, et al (1997) Pancreatic acinar cells produce, release, and respond to tumor necrosis factor-alpha. Role in regulating cell death and pancreatitis. J Clin Invest 100: 1853–1862

    Google Scholar 

  10. Gukovsky I, Gukovskaya AS, Blinman TA, Zaninovic V, Pandol SJ (1998) Early NF-kappaB activation is associated with hormone-induced pancreatitis. Am J Physiol 275: G1402 - G1414

    PubMed  CAS  Google Scholar 

  11. Grisham MB (1999) NF-kappa B activation in acute pancreatitis: protective, detrimental, or inconsequential? Gastroenterology 116: 489–492

    Article  PubMed  CAS  Google Scholar 

  12. Chen X, Ji B, Han B, Ernst SA, Simeone D, Logsdon CD (2002) NF-kappa B activation in pancreas induces pancreatic and systemic inflammatory response. Gastroenterology 122: 448–457

    Article  PubMed  CAS  Google Scholar 

  13. Denham W, Yang J, Wang H, Botchkina G, Tracey KJ, Norman J (2000) Inhibition of p38 mitogen activate kinase attenuates the severity of pancreatitis-induced adult respiratory distress syndrome. Crit Care Med 28: 2567–2572

    Article  PubMed  CAS  Google Scholar 

  14. Denham W, Fink G, Yang J, Ulrich P, Tracey KJ, Norman J (1997) Small molecule inhibition of tumor necrosis factor gene processing during acute pancreatitis prevents cytokine cascade progression and attenuates pancreatitis severity. Am Surg 63: 1045–1049

    PubMed  CAS  Google Scholar 

  15. Norman JG, Fink GW, Messina J, Carter G, Franz MG (1996) Timing of tumor necrosis factor antagonism is critical in determining outcome in murine lethal acute pancreatitis. Surgery 120: 515–521

    Article  PubMed  CAS  Google Scholar 

  16. Norman JG, Fink GW, Sexton C, Carter G (1996) Transgenic animals demonstrate a role for the IL-1 receptor in regulating IL-lbeta gene expression at steady-state and during the systemic stress induced by acute pancreatitis. J Surg Res 63: 231–236

    Article  PubMed  CAS  Google Scholar 

  17. de Beaux AC, Goldie AS, Ross JA, Carter DC, Fearon KC (1996) Serum concentrations of inflammatory mediators related to organ failure in patients with acute pancreatitis. Br J Surg 83: 349–353

    Article  PubMed  Google Scholar 

  18. Osman MO, Jacobsen NO, Kristensen JU, et al (1998) IT 9302, a synthetic interleukin-10 agonist, diminishes acute lung injury in rabbits with acute necrotizing pancreatitis. Surgery 124: 584–592

    Article  PubMed  CAS  Google Scholar 

  19. Van Deventer SJ (1997) Tumour necrosis factor and Crohn’s disease. Gut 40: 443–448

    PubMed  Google Scholar 

  20. Kaufmann P, Tilz GP, Lueger A, Demel U (1997) Elevated plasma levels of soluble tumor necrosis factor receptor (sTNFRp60) reflect severity of acute pancreatitis. Intensive Care Med 23: 841–848

    Article  PubMed  CAS  Google Scholar 

  21. Hughes CB, Grewal HP, Gaber LW, et al (1996) Anti-TNF alpha therapy improves survival and ameliorates the pathophysiologic sequelae in acute pancreatitis in the rat. Am J Surg 171: 274–280

    Article  PubMed  CAS  Google Scholar 

  22. Fink GW, Norman JG (1997) Specific changes in the pancreatic expression of the interleukin 1 family of genes during experimental acute pancreatitis. Cytokine 9: 1023–1027

    Article  PubMed  CAS  Google Scholar 

  23. Norman JG, Fink G, Franz M, et al (1996) Active interleukin-1 receptor required for maximal progression of acute pancreatitis. Ann Surg 223: 163–169

    Article  PubMed  CAS  Google Scholar 

  24. Rau B, Paszkowski A, Lillich S, Baumgart K, Moller P, Beger HG (2001) Differential effects of caspase-1/interleukin-lbeta-converting enzyme on acinar cell necrosis and apoptosis in severe acute experimental pancreatitis. Lab Invest 81: 1001–1013

    Article  PubMed  CAS  Google Scholar 

  25. Papanicolaou DA, Wilder RL, Manolagas SC, Chrousos GP (1998) The pathophysiologic roles of interleukin-6 in human disease. Ann Intern Med 128: 127–137

    Article  PubMed  CAS  Google Scholar 

  26. Van der Poll T, van Deventer SJ (1998) The role of interleukin 6 in endotoxin-induced inflammatory responses. Prog Clin Biol Res 397: 365–377

    PubMed  Google Scholar 

  27. Berney T, Gasche Y, Robert J, et al (1999) Serum profiles of interleukin-6, interleukin-8, and interleukin-10 in patients with severe and mild acute pancreatitis. Pancreas 18: 371–377

    Article  PubMed  CAS  Google Scholar 

  28. Lane JS, Todd KE, Gloor B, et al (2001) Platelet activating factor antagonism reduces the systemic inflammatory response in a murine model of acute pancreatitis. J Surg Res 99: 365–370

    Article  PubMed  CAS  Google Scholar 

  29. Kingsnorth AN, Galloway SW, Formela LJ (1995) Randomized, double-blind phase II trial of Lexipafant, a platelet-activating factor antagonist, in human acute pancreatitis. Br J Surg 82: 1414–1420

    Article  PubMed  CAS  Google Scholar 

  30. Johnson CD, Kingsnorth AN, Imrie CW, et al (2001) Double blind, randomised, placebo controlled study of a platelet activating factor antagonist, lexipafant, in the treatment and prevention of organ failure in predicted severe acute pancreatitis. Gut 48: 62–69

    Article  PubMed  CAS  Google Scholar 

  31. Van der Poll T, Jansen PM, Montegut WJ, et al (1997) Effects of IL-10 on systemic inflammatory responses during sublethal primate endotoxemia. J Immunol 158: 1971–1975

    PubMed  Google Scholar 

  32. Van Laethem JL, Eskinazi R, Louis H, Rickaert F, Robberecht P, Deviere J (1998) Multisystemic production of interleukin 10 limits the severity of acute pancreatitis in mice. Gut 43: 408–413

    Article  PubMed  Google Scholar 

  33. Deviere J, Le Moine O, Van Laethem JL, et al (2001) Interleukin 10 reduces the incidence of pancreatitis after therapeutic endoscopic retrograde cholangiopancreatography. Gastroenterology 120: 498–505

    Article  PubMed  CAS  Google Scholar 

  34. Bhatia M, Saluja AK, Hofbauer B, Lee HS, Frossard JL, Steer ML (1998) The effects of neutrophil depletion on a completely noninvasive model of acute pancreatitis-associated lung injury. Int J Pancreatol 24: 77–83

    PubMed  CAS  Google Scholar 

  35. Satoh A, Shimosegawa T, Fujita M, et al (1999) Inhibition of nuclear factor-kappa B activation improves the survival of rats with taurocholate pancreatitis. Gut 44: 253–258

    Article  PubMed  CAS  Google Scholar 

  36. Frossard JL, Saluja A, Bhagat L, et al (1999) The role of intercellular adhesion molecule 1 and neutrophils in acute pancreatitis and pancreatitis-associated lung injury. Gastroenterology 116: 694–701

    Article  PubMed  CAS  Google Scholar 

  37. Shokuhi S, Bhatia M, Christmas S, Sutton R, Neoptolemos JP, Slavin. J (2002) Levels of the chemokines growth-related oncogene alpha and epithelial neutrophil-activating protein 78 are raised in patients with severe acute pancreatitis. Br J Surg 89: 566–572

    CAS  Google Scholar 

  38. Denham W, Yang J, Fink G, Zervos EE, Carter G, Norman J (1997) Pancreatic ascites as a powerful inducer of inflammatory cytokines. The role of known vs unknown factors. Arch Surg 132: 1231–1236

    Google Scholar 

  39. Gukovskaya AS, Vaquero E, Zaninovic V, et al (2002) Neutrophils and NADPH oxidase mediate intrapancreatic trypsin activation in murine experimental acute pancreatitis. Gastroenterology 122: 974–984

    Article  PubMed  CAS  Google Scholar 

  40. Rau B, Paszkowski A, Esber S, et al (2001) Anti-ICAM-1 antibody modulates late onset of acinar cell apoptosis and early necrosis in taurocholate-induced experimental acute pancreatitis. Pancreas 23: 80–88

    Article  PubMed  CAS  Google Scholar 

  41. Bhatia M, Brady M, Zagorski J, et al (2000) Treatment with neutralising antibody against cytokine induced neutrophil chemoattractant ( CINC) protects rats against acute pancreatitis associated lung injury. Gut 47: 838–844

    Google Scholar 

  42. Guice KS, Oldham KT, Johnson KJ, Kunkel RG, Morganroth ML, Ward PA (1988) Pancreatitis-induced acute lung injury. An ARDS model. Ann Surg 208: 71–77

    Google Scholar 

  43. Schmid SW, Uhl W, Friess H, Malfertheiner P, Buchler MW (1999) The role of infection in acute pancreatitis. Gut 45: 311–316

    Article  PubMed  CAS  Google Scholar 

  44. Chastre J, Fagon JY (2002) Ventilator-associated pneumonia. Am J Respir Crit Care Med 165: 867–903

    Article  PubMed  Google Scholar 

  45. Runkel N, Eibl G (1999) Pathogenesis of pancreatic infection. In: Buchler M (ed) Acute Pancreatitis: Novel Concepts in Biology and Therapy. Blackwell Science, Boston, pp 255–261

    Google Scholar 

  46. Luiten EJ, Hop WC, Lange JF, Bruining HA (1995) Controlled clinical trial of selective decontamination for the treatment of severe acute pancreatitis. Ann Surg 222: 57–65

    Article  PubMed  CAS  Google Scholar 

  47. Bassi C, Falconi M, Valerio A, Marcucci S, Graziani R, Pederzoli P (1999) Identification of pancreatic infection. In: Buchler M (ed) Acute Pancreatitis: Novel Concepts in Biology and Therapy. Blackwell Science, Boston, pp 277–282

    Google Scholar 

  48. D’Egidio A, Schein M (2002) Surgical strategies in the treatment of pancreatic necrosis and infection. Br J Surg 78: 133–137

    Article  Google Scholar 

  49. Nakos G, Malamou-Mitsi VD, Lachana A, et al (2002) Immunoparalysis in patients with severe trauma and the effect of inhaled interferon-gamma. Crit Care Med 30: 1488–1494

    Article  PubMed  CAS  Google Scholar 

  50. Van Westerloo DJ, Schultz MJ, Bruno MJ, van Deventer S, van der Poll T (2002) Acute pancreatitis renders mice more susceptible to Pseudomonas pneumonia, which in turn aggravates the severity of pancreatitis. Evidence for a pathological vicious circle. ICAAC 2002 abstract book, ASM Press, Herndon, B808

    Google Scholar 

  51. Van Westerloo DJ, Weijer S, Bruno MJ, et al (2002) Acute pancreatitis impairs antibacterial host defense in abdominal sepsis in mice. ICAAC 2002 abstract book, ASM Press, Herndon, B1421

    Google Scholar 

  52. Windsor JA (2000) Search for prognostic markers for acute pancreatitis. Lancet 355: 19241925

    Google Scholar 

  53. Funbell I, Bornman P, Weakley S, Terblanche J, Marks I (1993) Obesity: an important prognostic factor in acute pancreatitis. Br J Surg 80: 484–486

    Article  Google Scholar 

  54. Larvin M, McMahon MJ (1989) APACHE II score for assessment and monitoring of acute pancreatitis. Lancet 2: 201–205

    Article  PubMed  CAS  Google Scholar 

  55. Heat D, Imrie CW (1994) The Hong Kong criteria and severity prediction in acute pancreatitis. Int J Pancreatol 15: 1–7

    Google Scholar 

  56. Ranson H, Rifkind K, Roses D, Fink S, Eng K, Spencer F (1974) Prognostic signs and the role of operative management in acute pancreatitis. Surg Gynaecol Obstet 139: 69–81

    CAS  Google Scholar 

  57. Munoz-Bongrand N, Panis Y, Soyer P, et al (2001) Serial computed tomography is rarely necessary in patients with acute pancreatitis: a prospective study in 102 patients. J Am Coll Surg 193: 146–152

    Article  PubMed  CAS  Google Scholar 

  58. Neoptolemos JP, Kemppainen EA, Mayer JM, et al (2000) Early prediction of severity in acute pancreatitis by urinary trypsinogen activation peptide: a multicentre study. Lancet 355: 1955–1960

    Article  PubMed  CAS  Google Scholar 

  59. Imrie CW (1999) Ransom, Glasgow, APACHE II systems: is the score a bore? In: Buchler M (ed) Acute Pancreatitis: Novel Concepts in Biology and Therapy. Blackwell Science, Boston, pp 199–209

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Westerloo, D.J., Bruno, M.J., van der Poll, T. (2003). New Insights into the Pathophysiology and Severity Assessment of Acute Pancreatitis. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5548-0_76

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5548-0_76

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5550-3

  • Online ISBN: 978-1-4757-5548-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics