Skip to main content

Hypoxic Pulmonary Vasoconstriction and the Pulmonary Microcirculation

  • Chapter
Intensive Care Medicine
  • 232 Accesses

Abstract

In a normal individual, pulmonary arterial blood is diverted from alveoli that are not being ventilated and perfuses the alveoli that are being ventilated [1, 2]. The mechanism that is responsible for this physiological shunt in blood flow is called hypoxic pulmonary vasoconstriction (HPV). When the PaO2 falls, the smooth muscle of the pulmonary arterioles contracts. The only non-oxygenated blood that enters the pulmonary veins is from the bronchial and thebesian vessels with this perfect match of ventilation and perfusion [3, 4]. With atelectasis, airway obstruction, alveolar edema and abnormalities of nitric oxide (NO) production, there can be a disruption of the pulmonary microcirculation. We will discuss the physiological processes that are responsible for HPV and how they can be disrupted by various pulmonary problems commonly encountered in the intensive care unit (ICU).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marshall BE, Hanson CW, Frasch F, Marshall C (1994) Role of hypoxic pulmonary vasoconstriction in pulmonary gas exchange and blood flow distribution. 2. Pathophysiology. Intensive Care Med 20: 379–389

    Google Scholar 

  2. Sweeney M, Yuan JX (2001) Hypoxic pulmonary vasoconstriction: role of voltage-gated potassium channels. Respir Res 1: 40–48

    Article  Google Scholar 

  3. Lakshminarayan S, Kowalski TF, Kirk W, Graham MM, Butler J (1990) The drainage routes of the bronchial blood flow in anesthetized dogs. Respir Physiol 82: 65–73

    Article  PubMed  CAS  Google Scholar 

  4. Agostoni PG, Doria E, Bortone F, Antona C, Moruzzi P (1995) Systemic to pulmonary bronchial blood flow in heart failure. Chest 107: 1247–1252

    Article  PubMed  CAS  Google Scholar 

  5. Hulme JT, Coppock EA, Felipe A, et al (1999) Oxygen sensitivity of cloned voltage-gated K(+) channels expressed in the pulmonary vasculature. Circ Res 85: 489–497

    Article  PubMed  CAS  Google Scholar 

  6. Wang Z, Jin N, Ganguli S, et al (2001) Rho-kinase activation is involved in hypoxia-induced pulmonary vasoconstriction. Am J Respir Cell Mol Biol 25: 628–635

    Article  PubMed  CAS  Google Scholar 

  7. Moncada S (1999) Nitric oxide: discovery and impact on clinical medicine. JR Soc Med 92: 164–169

    CAS  Google Scholar 

  8. Moncada S (1997) Nitric oxide in the vasculature: physiology and pathophysiology. Ann N Y Acad Sci 811: 60–67

    Article  PubMed  CAS  Google Scholar 

  9. Furchgott RF (1999) Endothelium-derived relaxing factor: discovery, early studies, and identification as nitric oxide. Biosci Rep 19: 235–251

    Article  PubMed  CAS  Google Scholar 

  10. Furchgott RF (1996) The 1996 Albert Lasker Medical Research Awards. The discovery of endothelium-derived relaxing factor and its importance in the identification of nitric oxide. JAMA 276: 1186–1188

    Article  PubMed  CAS  Google Scholar 

  11. Deves R, Angelo S, Rojas AM (1998) System y+L: the broad scope and cation modulated amino acid transporter. Exp Physiol 83: 211–220

    PubMed  CAS  Google Scholar 

  12. Guo FH, Uetani K, Hague SJ, et al (1997) Interferon gamma and interleukin 4 stimulate prolonged expression of inducible nitric oxide synthase in human airway epithelium through synthesis of soluble mediators. J Clin Invest 100: 829–838

    Article  PubMed  CAS  Google Scholar 

  13. Lundberg JO, Weitzberg E, Rinder J, et al (1996) Calcium-independent and steroid-resistant nitric oxide synthase activity in human paranasal sinus mucosa. Eur Respir J 9: 1344–1347

    Article  PubMed  CAS  Google Scholar 

  14. Punjabi CJ, Laskin JD, Pendino KJ, et al (1994) Production of nitric oxide by rat type II pneumocytes: increased expression of inducible nitric oxide synthase following inhalation of a pulmonary irritant. Am J Respir Cell Mol Biol 11: 165–172

    Article  PubMed  CAS  Google Scholar 

  15. Gow AJ, Stamler JS (1998) Reactions between nitric oxide and haemoglobin under physiological conditions. Nature 391: 169–173

    Article  PubMed  CAS  Google Scholar 

  16. Fischer SR, Deyo DJ, Bone HG, et al (1997) Nitric oxide synthase inhibition restores hypoxic pulmonary vasoconstriction in sepsis. Am J Respir Crit Care Med 156: 833–839

    Article  PubMed  CAS  Google Scholar 

  17. Soejima K, McGuire R, Snyder N, et al (2000) The effect of inducible nitric oxide synthase (iNOS) inhibition on smoke inhalation injury in sheep. Shock 13: 261–266

    Article  PubMed  CAS  Google Scholar 

  18. Lingnau W, McGuire R, Dehring DJ, et al (1996) Change in regional hemodynamics after nitric oxide inhibition during ovine bacteremia. Am J Physiol 39: R207 - R216

    Google Scholar 

  19. Meyer J, Lentz CW, Stothert JC, et al (1994) Effects of nitric oxide synthesis inhibition in hyperdynamic endotoxemia. Crit Care Med 22: 306–312

    Article  PubMed  CAS  Google Scholar 

  20. Meyer J, Hinder F, Stothert J Jr, et al (1994) Increased organ blood flow in chronic endotoxemia is reversed by nitric oxide synthase inhibition. J Appl Physiol 76: 2785–2793

    PubMed  CAS  Google Scholar 

  21. Brunston RL,Jr., Zwischenberger JB, Tao W, et al (1997) Total arteriovenous CO2 removal: simplifying extracorporeal support for respiratory failure. Ann Thorac Surg 64: 1599–1604

    Article  Google Scholar 

  22. Cox RA, Murakami K, Katahira J, et al (2001) Measurement of airway obstruction in sheep after smoke inhalation and burn injury. J Burn Care Rehabil 22: S127 (Abst)

    Google Scholar 

  23. Theissen JL, Herndon DN, Traber LD, et al (1990) Smoke inhalation and pulmonary blood flow. Prog Respir Res 26: 77–84

    Google Scholar 

  24. Isago T, Traber LD, Herndon DN, et al (1990) Pulmonary capillary pressure changes following smoke inhalation in sheep. Anesthesiology 73:Al234 (Abst)

    Google Scholar 

  25. Doerschuk CM, Allard MF, Martin BA, MacKenzie A, Autor AP, Hogg JC (1987) Marginated pool of neutrophils in rabbit lungs. J Appl Physiol 63: 1806–1815

    PubMed  CAS  Google Scholar 

  26. Hogg JC, Doerschuk CM (1995) Leukocyte traffic in the lung. Annu Rev Physiol 57: 97–114

    Article  PubMed  CAS  Google Scholar 

  27. Wiggs BR, English D, Quinlan WM, et al (1994) Contributions of capillary pathway size and neutrophil deformability to neutrophil transit through rabbit lungs. J Appl Physiol 77: 463–470

    PubMed  CAS  Google Scholar 

  28. Thommasen HV, Martin BA, Wiggs BR, Quiroga M, Baile EM, Hogg JC (1984) Effect of pulmonary blood flow on leukocyte uptake and release by dog lung. J Appl Physiol 56: 966–974

    PubMed  CAS  Google Scholar 

  29. Herndon DN, Traber DL, Traber LD (1986) The effect of resuscitation on inhalation injury. Surgery 100: 248–251

    PubMed  CAS  Google Scholar 

  30. Goldman G, Welbourn R, Kobzik L, et al (1992) Reactive oxygen species and elastase mediate lung permeability after acid aspiration. J Appl Physiol 73: 571–575

    PubMed  CAS  Google Scholar 

  31. Charan NB, Turk GM, Dhand R (1984) Gross and subgross anatomy of bronchial circulation in sheep. J Appl Physiol 57: 658–664

    PubMed  CAS  Google Scholar 

  32. Abdi S, Herndon D, Mcguire J, Traber L, Traber DL (1990) Time course of alterations in lung lymph and bronchial blood flows after inhalation injury. J Burn Care Rehabil 11: 510–515

    Article  PubMed  CAS  Google Scholar 

  33. Koppenol WH, Moreno JJ, Pryor WA, et al (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 5: 834–842

    Article  PubMed  CAS  Google Scholar 

  34. Zharikov SI, Herrera H, Block ER (1997) Role of membrane potential in hypoxic inhibition of L-arginine uptake by lung endothelial cells. Am J Physiol 272: L78 - L84

    PubMed  CAS  Google Scholar 

  35. Xia Y, Dawson VL, Dawson TM, et al (1996) Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc Natl Acad Sci USA 93: 6770–6774

    Article  PubMed  CAS  Google Scholar 

  36. Nakayama M, Murray PA (1999) Ketamine preserves and propofol potentiates hypoxic pulmonary vasoconstriction compared with the conscious state in chronically instrumented dogs. Anesthesiology 91: 760–771

    Article  PubMed  CAS  Google Scholar 

  37. Karzai W, Haberstroh J, Priebe HJ (1999) The effects of increasing concentrations of desflurane on systemic oxygenation during one-lung ventilation in pigs. Anesth Analg 89: 215–217

    PubMed  CAS  Google Scholar 

  38. Satoh D, Sato M, Kaise A, et al (1998) Effects of isoflurane on oxygenation during one-lung ventilation in pulmonary emphysema patients. Acta Anaesthesiol Scand 42: 1145–1148

    Article  PubMed  CAS  Google Scholar 

  39. Sustronck B, Van Loon G, Deprez P, Muylle, Gasthuys F, Foubert L (1997) Effect of inhaled nitric oxide on the hypoxic pulmonary vasoconstrictor response in anaesthetised calves. Res Vet Sci 63: 193–197

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Traber, D.L., Traber, L.D. (2002). Hypoxic Pulmonary Vasoconstriction and the Pulmonary Microcirculation. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5551-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5551-0_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5553-4

  • Online ISBN: 978-1-4757-5551-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics