Skip to main content

The Drosophila Thorax as a Model System for Neurogenetics

  • Chapter
Model Neural Networks and Behavior

Abstract

Each scientific question requires careful choice of the experimental system in which an attempt to answer the question will be made. If a familiar system can be used, this has the tremendous advantage of allowing the researcher to capitalize on all the information about the system that previous researchers have gained. Developing a new experimental system may take many scientist-years of effort before the rewards can be reaped. There are outstanding success stories in using both old and new systems, e.g., the continuing excellence of the cat as a neurophysiological system (Hubel, 1982; Wiesel, 1982) and the emergence of Aplysia as a superb animal for cellular neurophysiology (Kandel, 1976).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akam, M. E., 1983, The location of Ultrabithorax transcripts in Drosophila tissue sections, EMBO J 2:2075–2084.

    PubMed  CAS  Google Scholar 

  • Alawi, A. A., and Pak, W. L., 1971, On-transient of insect electroretinogram: Its cellular origin, Science 172:1055–1057.

    Article  PubMed  CAS  Google Scholar 

  • Ashburner, M., and Novitski, E. (eds.), 1976–1983, The Genetics and Biology of Drosophila, Volumes 1a-3c, Academic Press, New York.

    Google Scholar 

  • Bentley, D., 1975, Single gene cricket mutations: Effects on behavior, sensilla, sensory neurons, and identified interneurons, Science 187:760–764.

    Article  PubMed  CAS  Google Scholar 

  • Benzer, S., 1973, Genetic dissection of behavior, Sci. Am. 229:24–37.

    Article  PubMed  CAS  Google Scholar 

  • Brenner, S., 1973, The genetics of behavior, Br. Med. Bull. 29:269–271.

    PubMed  CAS  Google Scholar 

  • Caviness, V. S., Jr., and Rakic, P., 1978, Mechanisms of cortical development: A view from mutations in mice, Annu. Rev. Neurosci. 1:297–326.

    Article  PubMed  Google Scholar 

  • Coggshall, J. C., 1978, Neurons associated with the dorsal longitudinal flight muscles of Drosophila melanogaster, J. Comp. Neurol. 177:707–720.

    Article  PubMed  CAS  Google Scholar 

  • Coggshall, J. C., Boschek, C. B., and Buchner, S. M., 1973, Preliminary investigations on a pair of giant fibres in the central nervous system of dipteran flies, Z. Naturforsch. 28:783–4.

    Google Scholar 

  • Costello, W. J., and Salkoff, L., 1982, Suppression of abnormal synaptic vesicle depletion by divalent cations in the Drosophila mutant shibire, Soc. Neurosci. Abstr. 8:494.

    Google Scholar 

  • Costello, W. J., and Thomas, J. B., 1981, Development of thoracic muscles in muscle-specific mutant and normal Drosophila melanogaster, Soc. Neurosci. Abstr. 7:543.

    Google Scholar 

  • Deak, I. I., 1978, Thoracic duplications in the mutant wingless of Drosophila and their effect on muscles and nerves, Dev. Biol. 66:422–441.

    Article  PubMed  CAS  Google Scholar 

  • Eaton, R. C., 1984, Neural Mechanism in Startle Behavior, Plenum Press, New York.

    Google Scholar 

  • Goodman C. S., 1978, Isogenic grasshoppers: Genetic variability in the morphology of identified neurons, J. Comp. Neurol. 182:681–706.

    Article  PubMed  CAS  Google Scholar 

  • Hafen, E., Levine, M., and Gehring, W. J., 1984, Regulation of Antennapedia transcript distribution by the bithorax complex in Drosophila, Nature (London) 307:287–289.

    Article  CAS  Google Scholar 

  • Harcombe, E. S., and Wyman, R. J., 1977, Output pattern generation by Drosophila flight motoneurons, J. Neurophysiol. 40:1066–1077.

    PubMed  CAS  Google Scholar 

  • Harcombe, E. S., and Wyman, R. J., 1978, The cyclically repetitive firing sequences of Drosophila flight motorneurons, J. Comp. Physiol. 123:171–179.

    Article  Google Scholar 

  • Horvitz, H. R., Sternberg, P. W., Greenwald, I. S., Fixsen, W., and Moyed Ellis, H., 1983, Mutations that affect neural cell lineages and cell fates during the development of Caenorhabditis elegans, Cold Spring Harbor Symp. Quant. Biol. 48:453–462.

    Article  PubMed  Google Scholar 

  • Hubel, D. H., 1982, Exploration of the primary visual cortex, 1955–78, Nature (London) 299:515–524.

    Article  CAS  Google Scholar 

  • Ikeda, K., 1976, Temperature controlled release of flight pattern by a single-gene mutant in Drosophila melanogaster, Fed. Proc. 35:642.

    Google Scholar 

  • Ikeda, K., and Kaplan, W. D., 1970, Patterned neural activity of a mutant Drosophila melanogaster, Proc. Natl. Acad. Sci. U.S.A. 66:765–772.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, K., Koenig, J. H., and Tsuruhara, T., 1980, Organization of identified axons innervating the dorsal longitudinal flight muscle of Drosophila melanogaster, J. Neurocytol. 9:799–823.

    Article  PubMed  CAS  Google Scholar 

  • Jan, L. Y., and Jan, Y. N., 1976, Properties of the larval neuromuscular junction in Drosophila melanogaster, J. Physiol. 262:189–213.

    PubMed  CAS  Google Scholar 

  • Jan, L. Y., Jan, Y. N., and Dennis, M. J., 1977, Two mutations of synaptic transmission in Drosophila, Proc. R. Soc. Ser. B 198:87–108.

    Article  CAS  Google Scholar 

  • Kandel, E. R., 1976, Cellular Basis of Behavior: An Introduction to Behavioral Neurobiology, W. H. Freeman, San Francisco, California.

    Google Scholar 

  • Kaplan, W. D., and Trout, W. E., III, 1969, The behavior of four neurological mutants of Drosophila, Genetics 61:399–409.

    CAS  Google Scholar 

  • King, D. G., and Valentino, K. L., 1983, On neuronal homology: A comparison of similar axons in Musca, Sarcophaga, and Drosophila (Diptera: Schizophora), J. Comp. Neurol. 219:1–9.

    Article  PubMed  CAS  Google Scholar 

  • King, D. G., and Wyman, R. J., 1980, Anatomy of the giant fiber pathway in Drosophila. I. Three thoracic components of the pathway, J. Neurocytol. 9:753–770.

    Article  PubMed  CAS  Google Scholar 

  • Koenig, J. H., and Ikeda, K., 1980, Neural interactions controlling timing of flight muscle activity in Drosophila, J. Exp. Biol. 87:121–136.

    PubMed  CAS  Google Scholar 

  • Koenig, J. H., and Ikeda, K., 1983, Reciprocal excitation between identified flight motor neurons in Drosophila and its effect on pattern generation, J. Comp. Physiol. 150:305–317.

    Article  Google Scholar 

  • Kosaka, T., and Ikeda, K., 1985, Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila, J. Neurobiol. 14:207–225.

    Article  Google Scholar 

  • Koto, M. L., 1983, Morphology of giant fiber system neurons in wild-type and mutant Drosophila melanogaster, Ph.D. Thesis, Yale University, New Haven, Connecticut.

    Google Scholar 

  • Koto, M. L., Tanouye, M. A., Ferrus, A., Thomas, J. B., and Wyman, R. J., 1981, The morphology of the cervical giant fiber neuron of Drosophila, Brain Res. 221:213–217.

    Article  CAS  Google Scholar 

  • Lawrence, P. A., 1982, Cell lineage of the thoracic, muscles of Drosophila, Cell 29:493–503.

    Article  PubMed  CAS  Google Scholar 

  • Levine, J. D., and Wyman, R. J., 1973, Neurophysiology of flight in wild-type and a mutant Drosophila, Proc. Natl. Acad. Sci. U.S.A. 70:1050–1054.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, E. B., 1978, A gene complex controlling segmentation in Drosophila, Nature 276:565–570.

    Article  PubMed  CAS  Google Scholar 

  • Mulloney, B., 1969, Interneurons in the central nervous system of flies and the start of flight, Z. Vergl. Physiol. 64:243–253.

    Article  Google Scholar 

  • Mulloney, B., 1970, Organization of flight motoneurons of Diptera, J. Neurophysiol. 33:86–95.

    PubMed  CAS  Google Scholar 

  • Pak, W. L., Grossfield, J., and White, N. V., 1969, Nonphototactic mutants in a study of vision of Drosophila, Nature, (London) 222:351–354.

    Article  CAS  Google Scholar 

  • Palka, J., and Ghysen, A., 1982, Segments, compartments and axon paths in Drosophila, Trends Neurosci. 5:382–386.

    Article  Google Scholar 

  • Power, M. E., 1948, The thoracico-abdominal nervous system of an adult insect, Drosophila melanogaster, J. Comp. Neurol. 88:347–409.

    Article  PubMed  CAS  Google Scholar 

  • Salkoff, L., 1983a, Drosophila mutants reveal two components of fast outward current, Nature, (London) 302:249–251.

    Article  CAS  Google Scholar 

  • Salkoff, L., 1983b, Genetic and voltage clamp analysis of a Drosophila potassium channel, Cold Spring Harbor Symp. Quant. Biol. 48:221–231.

    Article  PubMed  CAS  Google Scholar 

  • Salkoff, L., and Wyman, R. J., 1980, Facilitation of membrane electrical excitability in Drosophila, Proc. Natl. Acad. Sci. U.S.A. 77:6216–6220.

    Article  PubMed  CAS  Google Scholar 

  • Salkoff, L., and Wyman, R. J., 1981a, Outward currents in developing Drosophila flight muscle, Science, 212:461–463.

    Article  PubMed  CAS  Google Scholar 

  • Salkoff, L., and Wyman, R. J., 1981b, Genetic modification of potassium channels in Drosophila Shaker mutants, Nature (London) 293:228–230.

    Article  CAS  Google Scholar 

  • Salkoff, L., and Wyman, R. J., 1983a, Ion currents in Drosophila flight muscles, J. Physiol. 337:687–709.

    PubMed  CAS  Google Scholar 

  • Salkoff, L., and Wyman, R. J., 1983b, Ion channels in Drosophila muscle, Trends Neurosci. 6:128–133.

    Article  Google Scholar 

  • Segal, M., Rogawski, M. A., and Barker, J. L., 1984, A transient potassium conductance regulates the excitability of cultured hippocampal and spinal neurons, J. Neurosci. 4:604–609.

    PubMed  CAS  Google Scholar 

  • Sturtevant, A. H., and Beadle, G. W., 1939, An Introduction to Genetics, W. B. Saunders, Philadelphia.

    Google Scholar 

  • Tanouye, M. A., and Wyman, R. J., 1980, Motor outputs of the giant nerve fiber in Drosophila, J. Neurophysiol. 44:405–421.

    PubMed  CAS  Google Scholar 

  • Tanouye, M. A., and Wyman, R. J., 1981, Inhibition between flight motor neurons in Drosophila, J. Comp. Physiol 144:345–355.

    Article  Google Scholar 

  • Tanouye, M. A., Ferrus, A., and Fujita, S. C., 1981, Abnormal action potentials associated with the Shaker complex locus of Drosophila, Proc. Natl. Acad. Sci. U.S.A. 78:6548–6552.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, J. B., and Wyman, R. J., 1982, A mutation in Drosophila alters normal connectivity between two identified neurons, Nature (London) 298:650–651.

    Article  CAS  Google Scholar 

  • Thomas, J. B., and Wyman, R. J., 1983, Normal and mutant connectivity between identified neurons in Drosophila, Trends Neurosci. 6:214–219.

    Article  Google Scholar 

  • Thomas, J. B., and Wyman, R. J., 1984a, Mutations altering synaptic connectivity between identified neurons in Drosophila, J. Neurosci. 4:530–538.

    PubMed  CAS  Google Scholar 

  • Thomas, J. B., and Wyman, R. J., 1984b, Duplicated neural structure in Bithorax flies, Dev. Biol. 102:531–533.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, J. B., Bastiani, M. J., Bate, M., and Goodman, C. S., 1984, From grasshopper to Drosophila: A common plan for neuronal development, Nature (London) 310:203–207.

    Article  CAS  Google Scholar 

  • Weisel, T. N., 1982, Postnatal development of the visual cortex and the influence of environment, Nature, (London) 299:583–591.

    Article  Google Scholar 

  • Wyman, R., 1965, Probabilistic characterization of simultaneous nerve impulse sequences controlling dipteran flight, Biophys.J. 5:447–471.

    Article  PubMed  CAS  Google Scholar 

  • Wyman, R. J., 1969a, Lateral inhibition in a motor output system. I. Reciprocal inhibition in dipteran flight motor system, J. Neurophysiol. 32:297–306.

    PubMed  CAS  Google Scholar 

  • Wyman, R. J., 1969b, Lateral inhibition in a motor output system. II. Diverse forms of patterning, J. Neurophysiol. 32:307–314.

    PubMed  CAS  Google Scholar 

  • Wyman, R. J., and Tanouye, M. A., 1982, Drosophila flight motor pattern: The evidence from interspike intervals, J. Exp. Biol. 96:413–416.

    Google Scholar 

  • Wyman, R. J., and Thomas, J. B., 1983, What genes are necessary to make an Identified synapse?, Cold Spring Harbor Symp. Quant. Biol. 48:641–652.

    Article  PubMed  CAS  Google Scholar 

  • Wyman, R. J., Thomas, J. B., Salkoff, L., and King, D. G., 1984, The Drosophila giant fiber system, in: Neural Mechanisms of Startle Behavior (R. Eaton, ed.), Plenum Press, New York, pp. 133–161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wyman, R.J., Thomas, J.B., Salkoff, L., Costello, W. (1985). The Drosophila Thorax as a Model System for Neurogenetics. In: Selverston, A.I. (eds) Model Neural Networks and Behavior. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5858-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5858-0_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5860-3

  • Online ISBN: 978-1-4757-5858-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics