Skip to main content

Nanoindentation of Thin Films

  • Chapter
Nanoindentation

Part of the book series: Mechanical Engineering Series ((MES))

Abstract

One of the most popular applications of nanoindentation is the determination of the mechanical properties of thin films. In nanoindentation tests, the properties of the film may be measured without removing the film from the substrate as is done in other types of testing. The spatial distribution of properties, in both lateral and depth dimensions, may be measured, and a wide variety of films are amenable to the technique, from ion-implanted surfaces to optical coatings and polymer films Apart from testing films in-situ, nanoindentation techniques can also be used for films made as free-standing microbeams or membranes.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.P. Weihs, S. Hong, J.C. Bravman, and W.D. Nix, “Mechanical deflection of cantilever microbeams: A new technique for testing the mechanical properties of thin films,” J. Mater. Res. 3 5, 1988, 931–942.

    Article  Google Scholar 

  2. J.L. Hay, M.E. O’Hem, and W.C. Oliver, “The importance of contact radius for substrate-independent property measurement of thin films,” Mat. Res. Soc. Symp. Proc. 522, 1998, pp. 27–32.

    Article  CAS  Google Scholar 

  3. M.G.D. El-Sherbiney and J. Hailing, “The Herztian contact of surfaces covered with metallic films,” Wear, 40, 1976, pp. 325–337.

    Article  Google Scholar 

  4. J.A. Ogilvy, “A parametric elastic model for indentation testing of thin films,” J. Phys. D: Appl. Phys. 26, 1993, pp. 2123–2131.

    Article  Google Scholar 

  5. R.B. King, “Elastic analysis of some punch problems for a layered medium,” Int. J. Solids Structures, 23 12, 1987, pp. 1657–1664.

    Article  Google Scholar 

  6. M.F. Doemer and W.D. Nix, “A method of interpreting the data from depth-sensing indentation instruments,” J. Mater. Res. 1 4, 1986, pp. 601–609.

    Article  Google Scholar 

  7. H. Gao, C-H Chiu, and J. Lee, “Elastic contact versus indentation modeling of multi-layered materials,” Int. J. Solids Structures, 29 20, 1992, pp. 2471–2492.

    Article  Google Scholar 

  8. N. Schwarzer, M. Whittling, M. Swain, and F. Richter, “The analytical solution of the contact problem of spherical indenters on layered materials: Application for the investigation of TiN films on silicon,” Thin Solid Films, 270 1–2, 1995, pp. 371–375.

    Google Scholar 

  9. N. Schwarzer, “Coating design due to analytical modelling of mechanical contact problems on multilayer systems,” Surf Coat. Technol. 133, 2000, pp. 397–402.

    Google Scholar 

  10. H. Buckle, in J.W. Westbrook and H. Conrad, eds. The Science of Hardness Testing and its Applications,American Society for Metals, Metals Park, OH, 1973, pp. 453–491.

    Google Scholar 

  11. B. Jonsson and S. Hogmark, “Hardness measurements of thin films,” Thin Solid Films, 114, 1984, pp. 257–269.

    Article  Google Scholar 

  12. P.J. Burnett and D.S. Rickerby, “The mechanical properties of wear-resistance coatings I: Modelling of hardness behaviour,” Thin Solid Films, 148, 1987, pp. 41–50.

    Article  CAS  Google Scholar 

  13. P.J. Burnett and D.S. Rickerby, “The mechanical properties of wear-resistance coatings II: Experimental studies and interpretation of hardness,” Thin Solid Films, 148, 1987, pp. 51–65.

    Article  CAS  Google Scholar 

  14. T.Y. Tsui, C.A. Ross, and G.M. Pharr, “A method for making substrate-independent hardness measurements of soft metallic films on hard substrates by nanoindentation,” J. Mater. Res. 18 6, 2003, pp. 1383–1391.

    Article  CAS  Google Scholar 

  15. A.K. Bhattacharya and W.D. Nix, “Finite element simulation of indentation experiments,” Int. J. Solids Structures, 24 12, 1988, pp. 1287–1298.

    Article  Google Scholar 

  16. D. Stone, W.R. LaFontaine, P. Alexopolous, T.-W. Wu, and Che-Yu Li, “An investigation of hardness and adhesion of sputter-deposited aluminium on silicon by utilizing a continuous indentation test,” J. Mater. Res. 3 1, 1988, pp. 141–147.

    Article  CAS  Google Scholar 

  17. S.J. Bull, “Modelling of the mechanical and tribological properties of coatings and surface treatments,” Mat. Res. Symp. Proc. 750, 2003, pp. Y6.1.1-Y6. 1. 12.

    Google Scholar 

  18. G.G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. Roy. Soc. A9, 1909, pp. 172–175.

    Google Scholar 

  19. D.B. Marshall and A.G. Evans, “Measurement of adherence of residually stressed thin films by indentation mechanics of interface delamination,” J. Appl. Phys. 56 10, 1984, pp. 2632–2638.

    Article  CAS  Google Scholar 

  20. L.G. Rosenfeld, J.E. Ritter, T.J. Lardner, and M.R. Lin, “Use of the microindentation technique for determining interfacial fracture energy,” J. Appl. Phys. 67 1990, pp. 3291–3296.

    Article  Google Scholar 

  21. M.D. Thouless, Acta Metall. 36, 1988, pp. 3131

    Article  CAS  Google Scholar 

  22. M.V. Swain and J. Mencik, “Mechanical property characterization of thin films using spherical tipped indenters,” Thin Solid Films, 253, 1994, pp. 204–211.

    Article  CAS  Google Scholar 

  23. A.J. Whitehead and T.F. Page, “Nanoindentation studies of thin film coated systems,” Thin Solid Filins, 220, 1992, pp. 277–283.

    Article  CAS  Google Scholar 

  24. M.D. Thouless, “An analysis of spalling in the microscratch test,” Eng. Fract. Mech. 61, 1998, pp. 75–81.

    Article  Google Scholar 

  25. M.D. Kriese, N.R. Moody, and W.W. Gerberich, “Effects of annealing and interlayers on the adhesion energy of copper thin films to SiO2/Si substrates,” Acta Mater. 46, 1998, pp. 6623–6630.

    Article  CAS  Google Scholar 

  26. A. A. Volinsky, N.R. Moody, and W.W. Gerberich, “Superlayer residual stress effect on the indentation adhesion measurements,” Mat. Res. Soc. Symp. Proc. 594, 2000, pp. 383–388.

    Article  CAS  Google Scholar 

  27. J. Sekler, P.A. Steinmann, and H.E. Hintermann, “The scratch test: Different critical load determination techniques,” Surface and Coatings Technology, 36, 1988, pp. 519–529.

    Article  CAS  Google Scholar 

  28. N. Gane and J. Skinner, “The friction and scratch deformation of metals on a micro scale,” Wear, 24, 1973, pp. 207–217.

    Article  CAS  Google Scholar 

  29. P.A. Steinmann, Y. Tardy, and H.E. Hintermann, “Adhesion testing by the scratch test method: The influence of intrinsic and extrinsic parameters on the critical load,” Thin Solid Films, 154, 1987, pp. 333–349.

    Article  CAS  Google Scholar 

  30. V.D. Jardret and W.C. Oliver, “Viscoelastic behaviour of polymer films during scratch test: A quantitative analysis,” Mat. Res. Soc. Symp. Proc. 594, 2000, pp. 251–256.

    Article  CAS  Google Scholar 

  31. S. Enders, P. Grau, and G. Berg, “Mechanical characterization of surfaces by nanotribological measurements of sliding and abrasive terms,” Mat. Res. Soc. Symp. Proc. 594, 2000, pp. 531–536.

    Article  CAS  Google Scholar 

  32. F.P. Bowden and D. Tabor, The Friction and Lubrication of Solids, Oxford University Press, Oxford, 1950.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fischer-Cripps, A.C. (2004). Nanoindentation of Thin Films. In: Nanoindentation. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5943-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5943-3_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1962-5

  • Online ISBN: 978-1-4757-5943-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics