Skip to main content

Part of the book series: Lasers, Photonics, and Electro-Optics ((LPEO))

Abstract

This chapter describes the adding-doubling method for solving the radiative transport equation. The advantages and disadvantages of the method are presented, followed by sections describing its theory and computer implementation. A detailed example is given with intermediate numerical results. Accurate tables with values of reflection and transmission for slabs of varying thicknesses with mismatched boundaries are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prahl SA, Gemert MJC van, Welch AJ. “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32: 559–568 (1993).

    Article  ADS  Google Scholar 

  2. Pickering JW, Prahl SA, Wieringen N van, Beek JB, Sterenborg HJCM, Gemert MJC van. “A double integrating sphere system for measuring the optical properties of tissue,” Appl. Opt. 32: 399–410 (1993).

    Article  ADS  Google Scholar 

  3. Parrish JA. “New concepts in therapeutic photomedicine: Photochemistry, optical targeting and the therapeutic window,” J. Invest. Dermatol. 77: 44–50 (1981).

    Google Scholar 

  4. Cheong WF, Prahl SA, Welch AJ. “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26: 2166–2185 (1990).

    Article  ADS  Google Scholar 

  5. Jacques SL, Alter CA, Prahl SA. “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1: 309–333 (1987).

    Google Scholar 

  6. Ishimaru A. Wave Propagation and Scattering in Random Media, vol. 1. Academic Press, New York, 1978.

    Google Scholar 

  7. Case KM, Zweifel PF. Linear Transport Theory, Addison-Wesley, Reading, MA, 1967.

    MATH  Google Scholar 

  8. Wilson BC, Adam G. “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10: 824–830 (1983).

    Article  Google Scholar 

  9. Prahl SA, Keijzer M, Jacques SL, Welch AJ. “A Monte Carlo model of light propagation in tissue,” in Müller GJ, Sliney DH (eds.), Dosimetry of Laser Radiation in Medicine and Biology, Vol. IS 5 (Bellingham, WA) SPIE Optical Engineering Press, 1989, pp. 102–111.

    Google Scholar 

  10. Keijzer M, Jacques SL, Prahl SA, Welch AJ. “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9: 148–154 (1989).

    Article  Google Scholar 

  11. Reynolds L, Johnson CC, Ishimaru A. “Diffuse reflectance from a finite blood medium: Applications to the modeling of fiber optic catheters,” Appl. Opt. 15: 2059–2067 (1976).

    Article  ADS  Google Scholar 

  12. Bonner RF, Nossal R, Havlin S, Weiss G.H. “Model for photon migration in turbid biological media,” J. Opt. Soc. Am. A 4: 423–432 (1987).

    Article  ADS  Google Scholar 

  13. Kubelka P. “New contributions to the optics of intensely light-scattering materials. Part I,” J. Opt. Soc. Am. 38: 448–457 (1948).

    Article  MathSciNet  ADS  Google Scholar 

  14. Welch AJ, Yoon G, Gemert van MJC, “Practical models of light distribution in laser irradiated tissue,” Lasers Surg. Med. 6: 488–493 (1987).

    Article  Google Scholar 

  15. Chandrasekhar S. Radiative Transfer, Dover, New York, 1960.

    Google Scholar 

  16. Liou KN. “A numerical experiment on Chandrasekhar’s discrete ordinate method for radiative transfer: Applications to cloudy and hazy atmospheres,” J. Atmos. Sci. 30: 1303–1326 (1973).

    Article  ADS  Google Scholar 

  17. Hulst HC van de. Multiple Light Scattering, Vol. 1, Academic Press, New York, 1980.

    Google Scholar 

  18. Plass GN, Kattawar GW, Catchings FE. “Matrix operator theory of radiative transfer. 1: Rayleigh scattering,” Appl. Opt. 12: 314–329 (1973).

    Article  ADS  Google Scholar 

  19. Hulst HC van de. “A new look at multiple scattering,” Tech. Rep., NASA Institute for Space Studies, New York, 1962.

    Google Scholar 

  20. Irvine WM. “Multiple scattering in planetary atmospheres,” Icarus 25: 175–204 (1975).

    Article  ADS  Google Scholar 

  21. Grant IP, Hunt GE. “Discrete space theory of radiative transfer I. Fundamentals,” Proc. R. Soc. London A A313: 183–197 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  22. Grant IP Hung GE. “Discrete space theory of radiative transfer II. Stability and non-negativity,” Proc. R. Soc. London A 313: 199–216 (1969).

    Article  ADS  Google Scholar 

  23. Hansen JE, Travis LD. “Light scattering in planetary atmospheres,” Space Sci. Rev. 16: 525–610 (1974).

    Article  ADS  Google Scholar 

  24. Wiscombe WJ. “On initialization, error and flux conservation in the doubling method,” J. Quant. Spectrosc. Radiat. Transfer 16: 637–658 (1976).

    Article  ADS  Google Scholar 

  25. Prahl SA. “Light transport in tissue,” PhD thesis, University of Texas at Austin, 1988.

    Google Scholar 

  26. Michels HH. “Abscissas and weight coefficients for Lobatto quadrature,” Math. Comput. 17: 237–244 (1963).

    Google Scholar 

  27. Hildebrand FB. Introduction to Numerical Analysis, Dover, New York, 1974.

    MATH  Google Scholar 

  28. Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, New York, 1986.

    Google Scholar 

  29. Hulst HC van de, Davis MM. Proc. Koninkl. Nederl. Akad. Wet. B64: 220 (1961).

    Google Scholar 

  30. Wiscombe WJ. “The delta-M method: rapid yet accurate radiative flux calculations for strongly asymmetric phase functions,” J. Atmos. Sci. 34: 362–377 (1977).

    Article  Google Scholar 

  31. Joseph JH, Wiscombe WJ, Weinman JA. “The delta-Eddington approximation for radiative flux transfer,” J. Atmos. Sci. 33: 2452–2459 (1976).

    Article  ADS  Google Scholar 

  32. Grant IP, Hunt GE. “Solution of radiative transfer problems using the invariant Sn method,” Mon. Not. R. Astron. Soc. 141: 27–41 (1968).

    ADS  Google Scholar 

  33. Irvine WM. “Multiple scattering by large particles,” Astrophys. J. 142: 1463–1475 (1965).

    ADS  Google Scholar 

  34. Wiscombe WJ. “Doubling initialization revisited,” J. Quant. Spectrosc. Radiat. Transfer 18: 245–248 (1977).

    Article  ADS  Google Scholar 

  35. Priesendorfer R. Hydrologic Optics, U.S. Dept. of Commerce, Washington, D.C., 1976.

    Google Scholar 

  36. Hulst HC van de. Multiple Light Scattering, Vol. 2, Academic Press, New York, 1980.

    Google Scholar 

  37. Giovanelli RG. “Reflection by semi-infinite diffusers,” Opt. Acta 2: 153–162 (1955).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Prahl, S.A. (1995). The Adding-Doubling Method. In: Welch, A.J., Van Gemert, M.J.C. (eds) Optical-Thermal Response of Laser-Irradiated Tissue. Lasers, Photonics, and Electro-Optics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6092-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6092-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6094-1

  • Online ISBN: 978-1-4757-6092-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics