Skip to main content

Radiation sources

  • Chapter
Passive Infrared Detection
  • 377 Accesses

Abstract

The emission of an electromagnetic wave by gases, liquids or solids is caused by the transformation of energy within matter. The origins of the phenomena are:

  • thermal radiation (or incandescence) associated with the thermal movement of particles (atoms, molecules, ions) and, by definition, is only dependent on the temperature;

  • luminescence for all other causes other than those associated with a thermal state. The mechanisms for these are varied, noting in particular: triboluminescence of mechanical origin, chemiluminescence with a chemical origin, electroluminescence with electrical origin, cathodoluminescence produced by the impact of electrons on a target, bioluminescence of organic origin, radioluminescence observed after the absorption of α or β particles and photoluminescence after photon absorption... Depending on the time constant, we distinguish between fluorescence and phosphorescence: in the former case the emission follows immediately after the excitation (Ï„ < 10 ns) and in the latter case, it is delayed and lasts longer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Bellamy, L.J. (1954) The infrared spectra of complex molecules, John Wiley and Sons, New York.

    Google Scholar 

  • Ben-Yosef, N. et al. (1983) Simulation of infrared images of natural backgrounds. Appl. Opt., 22 (1), p. 190.

    Article  Google Scholar 

  • Ben-Yosef, N. et al. (1985) Natural terrain infrared radiance statistics: daily variation. Appl. Opt., 24 (23), p. 4167.

    Article  Google Scholar 

  • Bramson, M.A. (1968) Infrared radiation: A handbook for applications, Plenum Press, New York.

    Google Scholar 

  • Breene, R.G. (1981) Theory of spectral line shape, John Wiley and Sons, New York.

    Google Scholar 

  • Eisenberg, R., Resnick, R. (1968) Quantum physics of atoms, molecules, solids, nuclei and particles, W.W. Norton Company, New York.

    Google Scholar 

  • Herzberg, G. (1950) Spectra of diatomic molecules, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Johnson, R.B., Branstetter, E.E. (1974) Integration of Planck’s equation by the Laguerre-Gauss quadrature method. J. Opt. Soc. Am., 64, p. 1445.

    Article  Google Scholar 

  • Kuhn, T.S. (1987) Blackbody theory and the quantum discontinuity: 18941912, University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Lowan, A.N., Blanch, G. (1940) Tables of Planck’s radiation and photon functions. J. Opt. Soc. Am., 30, pp. 70–81.

    Article  MathSciNet  Google Scholar 

  • Ludwig, C.B. et al. (1973) Handbook of infrared radiation from combustion gases, (eds R. Goulard and J.A.L. Thomson), National Aeronautics and Space Administration (NASA), Washington, DC.

    Google Scholar 

  • McMahon, H.O. (1950) Thermal radiation from partially transparent bodies. J. Opt. Soc. Am., 40, p. 376.

    Article  Google Scholar 

  • Merritt, T.P., Hall, F.F., Jr. (1959) Blackbody radiation, Proc. IRE, 47, pp. 1435–41.

    Article  Google Scholar 

  • Nicodemus, F.E. et al. (1976) Self-study manual on optical radiation measurements, NBS TN-910, National Bureau of Standards, Washington, DC.

    Google Scholar 

  • Nicodemus, F.E. et al. (1977) Geometrical considerations and nomenclature for reflectance, NBS MN-160, National Bureau of Standards, Washington, DC.

    Google Scholar 

  • Rose, H. et al. (1973) The Handbook of albedo and thermal earthshine, Report 190201–1-T, Environmental Research Institute of Michigan (BRIM), Ann Arbor, MI.

    Google Scholar 

  • Rothman, L.S. et al. (1992) The HITRAN molecular database: Editions of 1991 and 1992. J. Quant. Spectrosc. Radia. Transfer, 48, pp. 469–507.

    Article  Google Scholar 

  • Touloukian, Y.S. (1970) Thermophysical properties of matter, Vol. 1–9, IFUPlenum Press, New York.

    Google Scholar 

  • Zissis, G.J. (ed.) (1993) The infrared and electro-optical systems handbook. Vol. 1: Sources of radiation, Environmental Research Institute of Michigan (BRIM), Ann Arbor, MI. and SPIE Optical Engineering Press, Bellingham, WA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Caniou, J. (1999). Radiation sources. In: Passive Infrared Detection. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6140-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6140-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5090-1

  • Online ISBN: 978-1-4757-6140-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics