Skip to main content

Interaction of Radiation with Atoms and Ions

  • Chapter
Principles of Lasers
  • 804 Accesses

Abstract

This chapter discusses the interaction of radiation with atoms and ions that weakly interact with surrounding species, such as atoms or ions in a gas phase or impurity ions in an ionic crystal. The somewhat more complicated case of radiation interacting with molecules or semiconductors is considered in Chap. 3. Since the topic of radiation interacting with matter is very wide, we limit our discussion to phenomena relevant to atoms and ions acting as active media. After an introduction to the theory of blackbody radiation, a milestone for the whole of modern physics, we consider the elementary processes of absorption, stimulated emission, spontaneous emission, and nonradiative decay. These are first considered under the simplifying assumptions of a dilute medium and low intensity. Situations involving high-beam intensity and a nondilute medium (leading to the phenomena of saturation and amplified spontaneous emission) are considered. A number of very important. although perhaps less general topics related to the photophysics of dye lasers, free-electron lasers, and x-ray lasers are briefly considered in Chaps. 9 and 10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Reiff, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965), Chap. 9.

    Google Scholar 

  2. W. Heitler, Quantum Theory of Radiation, 3rd ed. ( Oxford University Press, London, 1953 ), Sec. II. 9.

    Google Scholar 

  3. H. A. Lorentz, Theory of Electrons, 2nd ed. ( Dover. New York. 1952 ), Chap. 3.

    Google Scholar 

  4. J. A. Stratton, Electromagnetic Theory, 1st ed. ( McGraw-Hill, New York, 1941 ), pp. 431–38.

    Google Scholar 

  5. R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1964), Chap. 6.

    Google Scholar 

  6. W. Louisell, Radiation and Noise in Quantum Electronics (McGraw-Hill, New York, 1964), Chap. 6.

    Google Scholar 

  7. R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1964), pp. 40–41, 60, 62, and Appendix 4.

    Google Scholar 

  8. R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1964), Appendix 5.

    Google Scholar 

  9. A. Einstein, On the Quantum Theory of Radiation, Z. Phys. 18, 121 (1917).

    Google Scholar 

  10. W. Louisell, Radiation and Noise in Quantum Electronics (McGraw-Hill, New York, 1964), Chap. 5.

    Google Scholar 

  11. H. G. Kuhn, Atomic Spectra, 2nd ed. ( Longmans, Green, London, 1969 ), Chap. 7.

    Google Scholar 

  12. Radiationless Transitions (F. J. Fong, ed.) (Springer-Verlag, Berlin, 1976), Chap. 4.

    Google Scholar 

  13. C. K. Rhodes and A. Szoke, Gaseous Lasers: Atomic, Molecular, Ionic in Laser Handbook (F. T. Arecchi and E. O. Schultz-DuBois, eds.) (North Holland, Amsterdam, 1972), vol. 1, pp. 265–324.

    Google Scholar 

  14. J. B. Birks, Photophysics of Aromatic Molecules (Wiley—Interscience, New York, 1970), Sect. IL9.

    Google Scholar 

  15. D. L. Dexter, J Chem. Phys. 21, 836 (1953).

    Article  ADS  Google Scholar 

  16. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), Sect. 9. 2.

    Google Scholar 

  17. W. J. Miniscalco, Optical and Electronic Properties of Rare Earth Ions in Glasses in Rare-Earth-Doped Fiber Lasers and Amplifiers (M. J. F. Digonnet, ed.) (Marcel Dekker, New York, 1993), Chap. 2.

    Google Scholar 

  18. T. Holstein, Imprisonment of Resonant Radiation in Gases, Phys. Rev. 72, 1212 (1947).

    Article  ADS  MATH  Google Scholar 

  19. R. Arrathoon, Helium—Neon Lasers and the Positive Column in Lasers (A. K. Levine and A. J. DeMaria, eds.) (Marcel Dekker, New York, 1976), Table 2.

    Google Scholar 

  20. M. H. Dunn and J. N. Ross, Argon Laser in Progress in Quantum Electronics,vol. 4 (J. H. Saunders and S. Stenholm, eds.) (Pergamon, Oxford, 1977), Table 2.

    Google Scholar 

  21. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, Spectroscopic, Optical, and Thermomechanical Properties of Neodymium-and Chromium-Doped Gadolinium Scandium Gallium Garnet, J Opt. Soc. Am. B 3, 102 (1986).

    ADS  Google Scholar 

  22. J. C. Walling, O. G. Peterson, J. P. Jennsen, R. C. Morris, and E. W. O’Dell, Tunable Alexandrite Lasers, IEEE J Quant. Elect. QE-16, 1302 (1980).

    Google Scholar 

  23. L. W. Casperson, Threshold Characteristics of Mirrorless Lasers, J Appl. Phys. 48, 256 (1977).

    Article  ADS  Google Scholar 

  24. O. Svelto, S. Taccheo, and C. Svelto, Analysis of Amplified Spontaneous Emission: Some Corrections to the Lyndford Formula, Optic. Comm. 149, 277–282 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Svelto, O. (1998). Interaction of Radiation with Atoms and Ions. In: Principles of Lasers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6266-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6266-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3289-1

  • Online ISBN: 978-1-4757-6266-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics