Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 206))

  • 201 Accesses

Abstract

We have grown atomic layer superlattices, i.e., ultrathin-layer superlattices and double delta-doped structures, based on metalorganic chemical vapor deposition. The (AlAs)m(GaAs)n ultrathin layer superlattices have been characterized by photoluminescence and Raman scattering experiment. The ultrathinlayer superlattice is revealed to be a system of quasi-three dimensional electrons and quasi-two dimensional LO phonons. The lowest conduction band in the superlattice is indicated to be a zone-folding-induced mixed-state of X and Γ bands. An idea of the isotope superlattices is proposed. We have used the double delta-doped structure to fabricate nano-structure devices with the aid of electron-beam-induced resist process, demonstrating a potential interest of universal field-effect-transistor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Esaki and R. Tsu, Superlattic and Negative Differential Conductivity in Semiconductors, IBM J. Res. Develop. 14; 61 (1970)

    Google Scholar 

  2. B. Jusserand, D. Paquet, and A. Regreny, Folded Optical Phonons in GaAs/A1GaAs Superlattices, Phys. Rev. B30; 6245 (1984)

    Article  Google Scholar 

  3. M. Nakayama, K. Kubota, H. Kato, S. Chika, and N. Sano, Raman Scattering from GaAs—AlAs Monolayer—Controlled Superlattices, Solid State Commun. 53: 493 (1985)

    Article  ADS  Google Scholar 

  4. A. K. Sood, J. Menendez, M. Cardona, and K. Ploog, Resonance Raman Scattering by Confined LO and TO phonons in GaAs—AlAs Superlattices, Phys. Rev. Lett. 54: 2111 (1985)

    Article  ADS  Google Scholar 

  5. U. Gnutzmann and K. Clauseker, Theory of Optical Transitions in an Optical Indirect Semiconductor with a Superlattice Structure, Appl. Phys. 3: 9 (1974)

    Google Scholar 

  6. A. Maduhukar, Modulated Semiconductor Structures: An Overview of Some Basic Considerations for Growth and Desired Electronic Structure, J. Vac. Sci. Technol. 20: 149 (1982)

    Article  ADS  Google Scholar 

  7. A. S. Barker, J. L. Merz, and A. C. Gossard, Study of Zone—Folfing effects on Phonons in Alternating monolayers of GaAs—AlAs, Phys. Rev. B17: 3181 (1978)

    Article  Google Scholar 

  8. A. Ishibashi, Y. Mori, M. Itabashi, N. Watanabe, Optical Properties of (AIAs)m(GaAs)n Superlattices Grown by Metalorganic Chemical Vapor Deposition, J. Appl. Phys. 58: 2691 (1985)

    Article  ADS  Google Scholar 

  9. A. Ishibashi, Y, Mori, F. Nakamura, and N. Watanabe, Optical ploperties of Quantum wells with ultrathin—layer Superlattices, J. Appl. Phys. 59: 2503 (1986)

    Article  ADS  Google Scholar 

  10. A. Ishibashi, Y. Mori, K. Kaneko, N. Watanabe, A New Connection Rule of Wave Functions at a Heterointerface and Band Discontinuity between GaAs and AlGaAs, J. Appl. Phys. 59: 4087 (1986)

    Article  ADS  Google Scholar 

  11. A. Ishibashi, M. Itabashi, Y. Mori, S. Kawado, K. Kaneko, and N. Watanabe, Raman Scattering from (AIAs)m(GaAs)n Ultrathin—layer Superlattices, Phys. Rev. B33: 2887 (1986)

    Article  Google Scholar 

  12. A. Ishibashi, M. Itabashi, Y. Mori, N. Watanabe, Ratio of LO phonon Intensities in Raman Scattering from (AlAs)n(GaAs)n Superlattices, Optoelectronics, devices and Technologies, 1: 51 (1986)

    Google Scholar 

  13. A. Ishibashi, Y. Mori, M. Itabashi, N. Watanabe, A fundamentally New aspect of Electron—Phonon Interaction in (AlAs)m(GaAs)n Ultrathin—Layer Superlattices, 18th Int. Conf. Phys. Semicon. vol. 2: 1365 (1987)

    Google Scholar 

  14. A. Ishibashi, Y. Mori, M. Itabashi, N. Watanabe, Proc. Int. Workshop Future Electron Devices — Superlattice Devices: 105 (1987)

    Google Scholar 

  15. A. Ishibahsi, K. Funato, and Y. Mori, Ultrathin—Channelled GaAs MESFET with Double—Delta—Doped Layers, Electron. Lett. 24: 1034 (1988)

    Google Scholar 

  16. A. Ishibashi, K. Funato, and Y. Mori, Heterointerface Field Effect Transistor with 200 —A—Long Gate, Jpn. J. Appl. Phys. 27: L2382 (1988)

    Article  ADS  Google Scholar 

  17. A. N. Broers, W. W. Molzen, J. J. Cuomo, and N. D. Wittels, Electron—Beam fabrication of 80—A Metal Structures, Appl. Phys. Lett. 29: 596 (1976)

    Google Scholar 

  18. S. Matsui and K. Mori, New Selective Deposition Technology by Electron Beam Induced Surface Reaction, J. Vac. Sci. Technol. B4: 299 (1985)

    Google Scholar 

  19. B. H. Chin and G. Ehrlich, Formation of Silicon Nitride Structure by Direct Electron Beam Writing, Appl. Phys. Lett. 38: 253 (1981)

    Google Scholar 

  20. Manasevit, Single Crystal Gallium Arsenide on Insulating Substrate, Appl. Phys. Lett. 12: 156 (1968)

    Google Scholar 

  21. H. Watanabe, and A. Usui, Atomic Layer Epitaxy, Proc. Int. Conf. GaAs and Related Compounds, Las Vegas: 1 (1986)

    Google Scholar 

  22. S. D. Hersee, M. Baldy, and P. Assena, The Growth of Quantum Well GaAs/AIGaAs Laser Structures, J. Phys, 43: C5–193 (1982)

    Google Scholar 

  23. R. Dingle, Confined Carrier Quantum State in Ultrathin Semiconductor Heterostructures, Festkoerperprobleme XV: 21 (1975)

    Google Scholar 

  24. P. M. Frijlink and J. Maluenda, MOVPE Growth of GaAlAs/GaAs Quantum Well Heterostructures, Jpn. J. Appl. Phys. 21: L574 (1982)

    Article  ADS  Google Scholar 

  25. H. Kawai, K. Kaneko, and N. Watanabe, Photolumicescence of AIGaAs/GaAs Quantum Wells Grown by Metalorganic Chemical Vapor Deposition, J. Appl. Phys. 56: 463 (1984)

    Article  ADS  Google Scholar 

  26. N. Watanabe and Y. Mori, Ultrathin GaAs/GaAlAs Layers Grown by MOCVD and their Structural Characterization, Surf. Sci. 174: 10 (1986)

    Google Scholar 

  27. K. Zeeger, “Semiconductor Physics”, 3rd edit., Springer Verlag, Berlin (1985)

    Google Scholar 

  28. M. Ilgems and G. Pearson, Infrared reflection Spectra of GaAlAs Mixed Crystals, Phys. Rev. B1: 1576 (1970)

    Article  Google Scholar 

  29. T. Toriyama, N. Kobayashi, and Y. Horikoshi, Lattice Vibration of Thin—layered AlAs—GaAs Superlattices, Jpn. J. Appl. Phys. 25: 1895 (1986)

    Article  ADS  Google Scholar 

  30. C. Colvard, T. A. Gant, M. V. Klein, R. Merlin, P. Fischer, H. Morkoc, and A. C. Gossard, Folded Acoustic and Quantized Optical Phonons in (GaAl)As Superlattices, Phys. Rev. B31: 2080 (1985)

    Article  Google Scholar 

  31. S. K. Yip and Y. C. Chang, Theory of Phonon Dispersion Relations in Semiconductor Superlattices, Phys. Rev. B30: 7037 (1984)

    Article  Google Scholar 

  32. See for example, M. Cardona, in “Light scattering in Solids,” M. Cardona and G. Guntherodt, ed., Springer Verlag, Berlin, 1975

    Google Scholar 

  33. P. Manuel, G.A. Sai—Halasz, L.L. Chang, Chin—An Chang, and L. Esaki, Resonant Raman Scattering in a Semiconductor Superlattice, Phys. Rev. Lett. 37: 1701 (1976)

    Article  ADS  Google Scholar 

  34. J. E. Zucker, A. Pinczuk, D. S. Chemla, A. C. Gossard, and W. Wiegmann, Raman Scattering Resonant with Quasi—Two—Dimensional Excitons in Semiconductor Quantum Wells, Phys. Rev. Lett. 35: 1293 (1983)

    Google Scholar 

  35. J. E. Zucker, A. Pinczuk, D. S. Chemla, A. C. Gossard, and W. Wiegmann, Delocalized Excitons in Semiconductor Heterostructures, Phys. Rev. 829: 7065 (1984)

    Google Scholar 

  36. M. Nakayama, K. Kubota, T. Tanaka, H. Kato, S. Chika, and N. Sano, Zone—Folding Effects on Phonons in GaAs—AlAs Superlattices, Jpn. J. Appl. Phys. 24: 1331 (1985)

    Article  ADS  Google Scholar 

  37. R. M. Martin, in “Proc. 2nd Int. Conf. on Light Scatt. In Solids”, M. Balkanski, ed., Paris, 1971, p25

    Google Scholar 

  38. Y. Toyozawa, Theory of the Line—Shapes of the Exciton Absorption Band Prog. Theo. Phys. 20: 53 (1958)

    Article  ADS  MATH  Google Scholar 

  39. H, Froehlich, Electrons in Lattice Fields, Adv. Phys. 3: 325 (1954)

    Article  ADS  Google Scholar 

  40. G. L. Bir and G. E. Pikus, Theory of the Deformation Potential for Semiconductors with a Complex Band Structure, Sov. Phys. Solid State 2: 2039 (1961)

    MathSciNet  Google Scholar 

  41. B. R. Nag, “ Electron Transport in Compound Semiconductors”, Springer Verlag, New York (1980)

    Book  Google Scholar 

  42. M. Cardona, in “Light scattering in Solids II”, M. Cardona and G. Guentherodt, ed., Springer—Verlag, Berlin (1982)

    Book  Google Scholar 

  43. W. Poetz and P. Vogl, Theory of Optical Phonon Deformation Potentials in Tetrahedral Semiconductors, Phys. Rev. B24: 2025 (1981)

    Article  Google Scholar 

  44. C. Kittel, “Introduction to Solis state Physics”, Wiley, New York (1976)

    Google Scholar 

  45. J. N. Schulman and T. C. McGill, Complex Band Structure and Superlattice Electronic States, Phys. Rev.l B23: 4149 (1981)

    Google Scholar 

  46. J. N. Schulman and Y. C. Chang, New method for calculationg electronic properties using complex band structures, Phys. Rev. B24: 4445 (1981)

    Article  Google Scholar 

  47. J. Sanchez—Dehesa and C. Tejedor, Selfconsistent calculation of properties of GaAs—AlAs superlattices with homopolar interfaces, Phys. Rev. B26: 5824 (1982)

    Article  ADS  Google Scholar 

  48. R. C. Miller, D. A. Kleinman, W. A. Nordland, Jr., and, A. C. Gossard, Luminescence studies of optically pumped quantum wells in GaAs—AIGaAs multilayer structures, Phys. Rev. B22: 863 (1980)

    Article  Google Scholar 

  49. R. Dingle, A. C. Cossard, and W. Wiegmann, Direct observation of superlattice formation in a semiconductor heterostructure, Phys. Rev. Lett, 34: 1327 (1975)

    Article  ADS  Google Scholar 

  50. T. Ishibashi, S. Tarucha, and H. Okamoto, Exciton associated optical absorption spectra of AlAs/GaAs superlattices at 300 K, Inst. Phys. Conf. Ser. No. 63: 587 (1981)

    Google Scholar 

  51. D. A. B. Miller, D.S. Chemla, d. J. Eilenberger, and P. W. Smith, A. C. Gossard, and W. T. Tsang, Large room—temperature optical nonlinearity in GaAs/GaA1As multiple quantum well structures, Appl. Phys. Lett. 41: 679 (1982)

    Article  ADS  Google Scholar 

  52. A. C. Gossard, P. M. Petroff, W. Wiegmann, R. Dingle, and A. Savage, Epitaxial structures with alternation—atomic—layer composition modulation, Appl. Phys. Lett. 29: 323 (1976)

    Google Scholar 

  53. J. P. van der Ziel and A. C. Gossard, Absorption, refractive index, and birefringence of AlAs—GaAs monolayers, J. Appl. Phys. 48: 3018 (1977)

    Article  ADS  Google Scholar 

  54. J. N. Schulman and T. C. McGill, Electronic properties of the (001) interface and superlattice, Phys. Rev. B19: 6341 (1979)

    Article  Google Scholar 

  55. W. Andreoni, and R. Car, Similarity of (Ga,A1,As) alloys and ultrathin heterostructures: Electronic properties from the empirical pseudopotential method, Phys. Rev. B21: 3334 (1980)

    Article  Google Scholar 

  56. K. K. Mon, Electronic band structure of (001) GaAs—AlAs superlattices, Solid State Commun. 41: 699 (1982)

    Article  ADS  Google Scholar 

  57. T. Nakayama and H. Kamimura, Band structure of semiconductor superlatices with ultrathin layers (GaAs)n/(AlAs)n with n=1,2,3, and 4, J. Phys. Soc. Jpn, 54: 4726 (1985)

    Article  ADS  Google Scholar 

  58. H. Kamimura and T. Nakayama, Self—consistent band structure calculations of (GaAs)n(AIAS)n superlattices of ultrathin layers with n=1 to 10, Proc. 18th Int Conf. Phys. Semicon.: 643 (1986)

    Google Scholar 

  59. H. Kamimura and T. Nakayama, Electronic structures and properties of ultrathin layered semiconductor superlattices, Comments Cond. Mat. Phys. 13: 143 (1987)

    Google Scholar 

  60. M. A. Gell, D. Ninno, M. Jaros, and D. C. Herbert, Zone—folding, morphogenesis, and the role of periodicity in GaAs—AlGaAs (001) superlattices, Phys. Rev. B34: 2416 (1986)

    Article  Google Scholar 

  61. M. A. Gell, M. Jaros, and D. C. Herbert, Band offsets and zone—folding in GaAs—AlAs (001) superlattices, Superlattice and Microstructures, 3: 121 (1987)

    Article  ADS  Google Scholar 

  62. E. Yamaguchi, Theory of the DX centers in III—V Semiconductors and (001) Superlattices, J. Phys. Soc. Jpn. 56: 2853 (1987)

    Google Scholar 

  63. N. Hamada, S. Ohnishi, and A. Oshiyama, Energy bands and stable structures of ultrathin—layer semiconductor superlattices, Extended Abstracts 18th Conf. Solid State Devices and Materials,: 343 (1986)

    Google Scholar 

  64. N. Hamada, S. Ohnishi, Electronic structure calculations of (AlAs)m(GaAs)n superlattices based on full—potential linearized augmented—plane—wave method, Suerlattices and Microstructures, 3: 301 (1987)

    Article  ADS  Google Scholar 

  65. M. Garriga, M. Cardona, N. E. Christensen, F. Lautenschlager, T. Isu, and K. Ploog, Interband transitions in thin—layer GaAs/AlAs superlattices, Phys. Rev. B36: 3254 (1987)

    Article  Google Scholar 

  66. M. Tanaka, and H. Sakaki, Atomistic models of intergace structures of GaAs—A1GaAs (x=0.2–1) quantum wells grown by interrupted and uninterrupted MBE, J. Cryst. Growth. 81: 153 (1987)

    Article  ADS  Google Scholar 

  67. H. C. Casey, Jr. and M. B. Panish, ‘Heterostructure Lasers’, Part A, Academic Press, New York (1978)

    Google Scholar 

  68. I. Ladny and H. Kressel, Visible CW (A1Ga)As heterojunction laser diode, Int. Elec. Dev. Meeting Technical Digest: 129 (1976)

    Google Scholar 

  69. M. Naganuma, Y. Suzuki, and H. Okamoto, Photoluminescence of GaSb—AISb superlattices grown by MBE, Inst. Phys. Conf. Ser. 63: 125 (1982)

    Google Scholar 

  70. G. Griffiths, K. Mohammed, S. Subbana, H. Kroemer, and J. L. Merz, GaSb/A1Sb multiquantum well structures: Molecular beam epitaxial growth and narrow—well photoluminescence, Appl. Phys. Lett. 43: 1059 (1983)

    Google Scholar 

  71. E. Finkman, M. D. Sturge, and M. C. Tamargo, X—point excitons in AlAs/GaAs superlattices, Appl. Phys. Lett. 49: 1299 (1986)

    Google Scholar 

  72. E. F. Schubert, A. Fisher, and K. Ploog, The delta—doped field effect transistor (oFET), IEEE Trans. Elec. Dev. ED-33: 625 (1986)

    Google Scholar 

  73. K. Ploog, M. Hauser, and A. Fisher, Fundamemtal studies and device application of o—doping in GaAs layers and in A1GaAs/GaAs heterostructures, Appl. Phys. A45: 233 (1988)

    Google Scholar 

  74. T. J. Drummond, H. Morkoc, K. Lee, and M. Shur, Model for modulation doped field effect transistor, IEEE Elec. Dev. Lett. EDL-3: 338 (1982)

    Google Scholar 

  75. M. B. Das, and M. L. Roszak, Design calculation for submicron gate—length AIGaAs/GaAs modulation—doped FET structures using carrier saturation velocity/charge—control model, Solid State Electron. 28: 997 (1985)

    Article  ADS  Google Scholar 

  76. S. M. Sze, “Physics of Semiconductor Devices,” John Willey & Sons, New York (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ishibashi, A. (1989). MOCVD-Grown Atomic Layer Superlattices. In: Fasol, G., Fasolino, A., Lugli, P. (eds) Spectroscopy of Semiconductor Microstructures. NATO ASI Series, vol 206. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6565-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6565-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6567-0

  • Online ISBN: 978-1-4757-6565-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics