Skip to main content

Part of the book series: Microdevices ((MDPF))

  • 400 Accesses

Abstract

Devices can be made with decreasing linear dimensions until one of two limitations is reached, namely

  • Limitations imposed by the physical principles by which the device operates

  • Limitations imposed by our ability to fabricate the device to the required dimensions and tolerances

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Hoeneisen and C. A. Mead, Fundamental limitations in microelectronics. I. MOS technology, Solid State Electron. 15, No. 7, 819–829 (July, 1972 ).

    Google Scholar 

  2. P. S. Howard and T. Kwok, Electromigration in metals, Rep. Prog. Phys. 52, 301–348 (1989).

    Article  ADS  Google Scholar 

  3. L. P. Muray, L. C. Rathbun, and E. D. Wolf, New techniques and analysis of accelerated electromagnetic life testing in multilevel metallizations, Appl. Phys. Lett. 53 (15), 1414 (1988).

    Article  ADS  Google Scholar 

  4. L. P. Muray, Electromigration at via contacts in multilevel interconnect systems, Ph.D. dissertation, Cornell University (January, 1990 ).

    Google Scholar 

  5. R. W. Keyes, Physical limits in digital electronics, Proc. IEEE 63, No. 5, 740 (May, 1970 ).

    Google Scholar 

  6. R. M. Hill, Single-carrier transport in thin dielectric films, Thin Solid Films 1, 39 (1967).

    Article  ADS  Google Scholar 

  7. C. Mead and L. Conway, Introduction to VLSIC Systems, Addison-Wesley, Reading, Mass. (1979).

    Google Scholar 

  8. J. T. Wallmark, A statistical model for determining the minimum size in integrated circuits, IEEE Trans. Electron Devices ED-26, No. 2, 135 (February, 1979 ).

    Google Scholar 

  9. A. V. Crewe, Some limitations on electron beam lithography, J. Vac. Sci. Technol. 16, No. 2, 255 (March-April, 1979 ).

    Google Scholar 

  10. A. N. Broers, Limits of thin-film microfabrication, Proc. R. Soc. London Ser. A 46, 1 (1988).

    ADS  Google Scholar 

  11. T. C. Fry, Probability and its Engineering Use, 2nd ed., Van Nostrand, Princeton, N.J. (1965).

    Google Scholar 

  12. K. Murata and D. F. Kyser, Monte Carlo methods and microlithography simulation for electron and X-ray beams, Adv. Electron. Electron Phys. 69, 176–261 (1987).

    Article  Google Scholar 

  13. E. Spiller and R. Feder, in: X-ray Optics: Applications to Solids ( H. J. Queisser, ed.), Springer-Verlag, Berlin (1975).

    Google Scholar 

  14. I. E. Sutherland, C. A. Mead, and T. E. Everhart, Basic limitations in microcircuit fabrication technology, Report No. R-1956-ARPA, RAND Corporation, Santa Monica, Calif. ( November, 1976 ).

    Google Scholar 

  15. H. I. Smith, A statistical analysis of UV, x-ray, and charged particle lithographies, J. Vac. Sci. Technol. B4 (1), 148–153 (1986).

    Article  Google Scholar 

  16. T. Ohmi, N. Mikoshiba, and K. Tsubouchi, Super clean room system-ultra clean technology for submicron LSI fabrication, Proceedings of the First International Symposium on Ultra Large Scale Integration (VLSI) (1987).

    Google Scholar 

  17. K. Dillenbeck, Characteristics of air ionization in the clean room, Microcontamination (June, 1978 ).

    Google Scholar 

  18. P. D. Scovell, C. N. Duckworth, and P. J. Raser, Modelling of VLSI semiconductor manufacturing processes, Rep. Prog. Phys. 52, 349–388 (1989).

    Article  ADS  Google Scholar 

  19. D. A. Antoniadis, S. E. Hansen, R. W., Dutton, and G. Gonzalez, SUPREM IA program for IC process modelling and simulation, Technical Report No. 5019–1, Integrated Circuit Laboratory, Stanford University (May, 1977 ).

    Google Scholar 

  20. J D. Plummer, R. W. Dutton, J. F. Gibbons, C. R. Helms, J. D. Meindl, W. A. Tiller, L. A. Chrestel, C. P. Ho, L. Mei, K. C. Saraswat, B. E. Deal, and T. I. Kamins, Computer Aided Design of Integrated Circuit Fabrication Processes for VLSI Devices, Technical Report, Stanford Electronics Laboratories, Stanford University, California (1980).

    Google Scholar 

  21. W. G. Oldham, S. N. Nandgaonkar, A. R. Neureuther, and M. O’Toole, A general simulator for VLSI lithography and etching processes: Part I-Application to projection lithography, IEEE Trans. Electron Devices ED-26(4), 717–724 (1979).

    Google Scholar 

  22. W. G. Oldham, A. R. Neureuther, C. Sung, J. L. Reynolds, and S. N. Nandgaonkar, A general simulator for VLSI lithography and etching processes: Part II-Application to deposition and etching, IEEE Trans. Electron Devices ED-27(8), 1455–1462 (1980).

    Google Scholar 

  23. D. E. Prober, Quantum transport in microstructures, Microelectron. Eng. 5, 203–216 (1986).

    Article  Google Scholar 

  24. C. D. Wilkinson, Nanofabrication, Microelectron. Eng. 6, 155–162 (1987).

    Article  Google Scholar 

  25. E. D. Wolf, Nanofabrication opportunities for interdisciplinary research, Microelectron. Eng. 9, 5–11 (1989).

    Article  Google Scholar 

  26. T. H. P. Chang, D. P. Kern, E. Kratschmer, K. Y. Lee, H. E. Luhn, M. A. McCord, S. A. Rishton, and Y. Vladimirsky, Nanostructure technology, IBM J. Res. Dev. 32, No. 4, 462 (July, 1988 ).

    Google Scholar 

  27. D. C. Flanders and A. E. White, Application of 100 A linewidth structures fabricated by shadowing techniques, J. Vac. Sci. Technol. 19(4), 892 (November-December, 1981 ).

    Google Scholar 

  28. M. D. Feuer and D. E. Prober, Step-edge fabrication of ultrasmall Josephson microbridges, Appl. Phys. Lett. 36(3). 226 (February, 1980 ).

    Google Scholar 

  29. D. E. Prober, M. D. Feuer, and N. Giordano, Fabrication of 300-A metal lines with substrate-step techniques, Appl. Phys. Lett. 37(1), 94 (July, 1980 ).

    Google Scholar 

  30. W. D. Williams and N. Giordano, Fabrication of 80 A metal wires, Rev. Sci. Instrum. 55(3), 410–412 (March, 1984 ).

    Google Scholar 

  31. I. Adesida, A. Muray, M. Isaacson, and E. D. Wolf, Very high resolution ion beam lithography, Microcircuit Eng. 83, 151–156 (1983).

    Google Scholar 

  32. H. G. Craighead and P. M. Mankiewich, Ultra-small metal particle arrays produced by high resolution electron-beam lithography, J. Appl. Phys. 53(11), 7186–7188 (November, 1982 ).

    Google Scholar 

  33. U. B. Sleytr, M. Sara, and D. Pum, Application potentials of two dimensional protein crystals, Microcircuit Eng. 9, 13–20 (1989).

    Article  Google Scholar 

  34. G. E. Moore, in: Tech. Dig. 1975 Int. Electron Devices Meet., pp. 11–13, IEEE, New York (1975).

    Google Scholar 

  35. R. N. Noyce, Large-scale integration: What is yet to come? Science 195, 1102–1107 (1977).

    Article  ADS  Google Scholar 

  36. D. K. Ferry, J. R. Barker, and C. Jacoboni (eds.), Physics of Nonlinear Transport in Semi-conductors, Ser. B, Vol. 52, Plenum Press, New York (1980).

    Google Scholar 

  37. D. E. Prober, in: Percolation, Localization, and Superconductivity ( A. M. Goldman and S. Wolf, eds.), Plenum Press, Les Arcs, France (1983).

    Google Scholar 

  38. C. Harvey, C. Hoch, R. C. Staples, B. Whitehead, J. Comeau, and E. D. Wolf, Signaling for growth orientation and cell differentiation by surface topography in Uromyces, Science 235, 1659–1662 (March, 1987 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brodie, I., Muray, J.J. (1992). Limits to Nanofabrication. In: Brodie, I., Muray, J.J. (eds) The Physics of Micro/Nano-Fabrication. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6775-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6775-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3221-1

  • Online ISBN: 978-1-4757-6775-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics