Skip to main content

Part of the book series: Applied Optimization ((APOP,volume 49))

Abstract

Analysis and design of transportation systems require, respectively, the estimation of present demand and the forecasting of (hypothetical) future demand. These can be obtained by using different sources of information and statistical procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference Notes

  1. Road Research Laboratory (RRL) (1965). Research on road traffic. RRL, London.

    Google Scholar 

  2. Environmental Protection Agency (EPA) (1996). Travel Survey Manual. Department of Transportation, Washington D.C.

    Google Scholar 

  3. Cochran W.G. (1963). Sampling techniques. John Wiley, New York.

    Google Scholar 

  4. Yates F. (1981). Sampling methods for censuses and surveys. Griffin, London.

    Google Scholar 

  5. Smith M.J. (1979). The Existence, Uniqueness and Stability of Traffic Equilibrium Transportation Research 13B: 295–304.

    Google Scholar 

  6. Brog W., Ampt E., (1982). State of the art in the collection of travel behaviour data. in Travel Behaviour for the 1980’s, Special Report 201, National Research Council, Washington, DC.

    Google Scholar 

  7. Ortuzar J.de D., and L.G. Willumsen (1994). Modelling Transport John Wiley and Sons, 2nd edition.

    Google Scholar 

  8. Domencich T. A., and D. McFadden (1975). Urban travel demand: a behavioural analysis. American Elsevier, New York.

    Google Scholar 

  9. Horowitz J.L. (1981). Identification and diagnosis of specification errors in the multinominal logit model Transportation Research 15B: 345–360.

    Google Scholar 

  10. Horowitz J.L. (1982). Air quality analysis for urban transportation planning. MIT Press, Cambridge, Mass.

    Google Scholar 

  11. Manski C. (1977). The structure of random utility models Theory and Decision 8: 229–254.

    Google Scholar 

  12. Manski C.F., and D. McFadden (1981). Alternative estimators and sample designs for discrete choice analysis. in Structural Analysis of discrete data with Econometric Applications, MIT Press, Cambridge, Mass.

    Google Scholar 

  13. Gunn H., J. and J.J. Bates (1982). Statistical aspects of travel demand modelling. Transportation Research 16A: 371–382.

    Google Scholar 

  14. Manski C.F., and Lerman S.R. (1977). The estimation of probabilities from choice-based samples Econometrica 45.

    Google Scholar 

  15. Ben Akiva M., and S. Lerman (1985). Discrete Choice Analysis: Theory and Application to Travel Demand. MIT Press, Cambridge, Mass.

    Google Scholar 

  16. Hensher D.A., Barnard P.O., and Truong T.P. (1988), The role of Stated Preference methods in studies of travel choice Journal of Transport Economics and Policy 22.

    Google Scholar 

  17. Louviere J.J. (1988), Conjoint analysis modelling of Stated Preferences Journal of Transport Economics and Policy 22.

    Google Scholar 

  18. Ortuzar J. De D. (1992), Stated Preference in travel demand modelling 6th World Conference on Transportation Research, Lyon.

    Google Scholar 

  19. Pearmin D., Swanson J., Kroes E., and Bradley M. (1991). Stated Preferences Techniques: a guide to practice. Steer Davies Gleave and Hague Consulting Group, London.

    Google Scholar 

  20. Box G., Hunter W., and Hunter G. (1978), Statistics for experiment, John Wiley and S.

    Google Scholar 

  21. Ben-Akiva M., and Morikawa T. (1990). Estimation of switching models from Revealed Preference and Stated Intention Transportation Research 24 A.

    Google Scholar 

  22. Bradley M.A., and Daly A.J. (1992). Estimation of logit choice models using mixed Stated Preference and Revealed Preference information 20`h PTRC Sam, Manchester.

    Google Scholar 

  23. Cantarella G. E., E. Cascetta, V. Adamo, and V. Astarita (1999). A doubly dynamic traffic assignment model for planning applications. Proceedings of the 14th International Symposium on Transportation and Traffic Theory, Jerusalem, Israel.

    Google Scholar 

  24. Cascetta E. (1986). A class of travel demand estimators using traffic flows. CRT Publication 375, Université de Montreal, Montreal, Canada.

    Google Scholar 

  25. Van Zuylen J.H., and Willumsen L.G. (1980). The most likely trip matrix estimated from traffic counts Transportation Research 14B: 281–293.

    Google Scholar 

  26. Maher. M. J. (1983). Inferences on trip matrices from observation on link volumes: a statistical approach. Transportation Research 7B: 435–447.

    Google Scholar 

  27. Cascetta E. (1984). Estimation of trip matrices from traffic counts and survey data: a generalized least squares estimator Transportation Research 8B: 289–299.

    Google Scholar 

  28. Di Gangi M. (1988). Una valutazione delle prestazioni statistiche degli estimatori della matrice the combinano i risultati di indagini e/o modelli con i conteggi di flussi di traffico Ricerca Operativa 51: 23–59.

    Google Scholar 

  29. Wu.J. H., Y. Chen, and M. Florian (1995). The continuous dynamic network loading problem: a mathematical formulation and solution method. Transportation Research 32B: 173–187.

    Google Scholar 

  30. Yang H., and S. Yagar (1995). Traffic assignment and signal control in saturated road networks Transportation Research 29 A: 125–139.

    Google Scholar 

  31. Cantarella G.E., and M. Binetti (2000). Stochastic Assignment with Gamma Distributed Perceived Costs. Proceedings of the 6th Meeting of the EURO Working Group on Transportation. Gothenburg, and Sweden, and September 1998, forthcoming.

    Google Scholar 

  32. Cremer M. and Keller H. (1987). A new class of dynamic methods for the identification of Origin-Destination flows Transportation Research 21B: 117–132.

    Google Scholar 

  33. Nguyen S., and S. Pallottino (1986). Assegnazione dei passeggeri ad un sistema di linee urbane: determinazione degli ipercammini minimi. Ricerca Operativa 39: 207–230.

    Google Scholar 

  34. Okutani I., Stephanades Y. (1984). Dynamic prediction of traffic volume through Kalman Filtering theory. Transportation Research 18B: 1–11.

    Google Scholar 

  35. Ashok K. and Ben-Akiva M. (1993) Dynamic Origin-destination Matrix Estimation and Prediction for Real Time-Traffic Management Systems. in C. F. Daganzo editor, International Symposium on Transportation and Traffic Theory, Elsevier Science Pub. Co.: 465–484.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cascetta, E. (2001). Estimation of Travel Demand Flows. In: Transportation Systems Engineering: Theory and Methods. Applied Optimization, vol 49. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6873-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6873-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6875-6

  • Online ISBN: 978-1-4757-6873-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics