Skip to main content

Role of Oxidative Injury in the Pathogenesis of Methylmercury Neurotoxicity

  • Chapter
Advances in Mercury Toxicology

Part of the book series: Rochester Series on Environmental Toxicity ((RSET))

Abstract

We have previously demonstrated (J. Neuropath. Exp. Neurol. 48:1–10, 1989) that the pathogenesis of methylmercury (MeHg) induced cytotoxicity in suspensions of cerebellar granule neurons was not strictly coupled to the reduction of ATP or combined inhibition of ATP or macromolecule synthesis, but suggested a component of free-radical injury. The present studies reveal that MeHg initiates a dose- and time-dependent lipoperoxidation measured as malonaldehyde generation or induction of a 2′,7′-dichlorofluorescein (DCFA) signal representing oxygen radical species generation. A simultaneous decline in GSH occurred. Partial protection was given by EGTA (a Ca2+ chelator) or desferoxamine (Fe2+ chelation with inhibition of the Fenton reaction and OH radical production). However, no cytoprotection was found with alpha-tocopherol succinate although significant inhibition of lipoperoxidation was observed. Analogous experiments in cerebellar granule cell culture revealed a dose-dependent (0.5–μM) increase in the specific activity of GSH accompanied by increased lipoperoxidation and neuronal cell injury. Such paradoxical induction of GSH occurred in glial cells, whose endogenous content was higher than that of neuron culture. Inhibition of gamma-glutamyl cysteine synthetase by buthionine sulfoximine (BSO) lowered cellular GSH and strongly potentiated MeHg-induced lipoperoxidation and cell death in neuron culture but had minimal effect in glial culture.

It is likely that activated oxygen species and lipoperoxidation significantly contribute to the pathogenesis of alkylmercury induced injury but are not singly causal to the final cytotoxic event. Other processes, especially intracellular protein degradation of -SH sensitive proteins or permeases, modification of cytoskeletal proteins, activation of phospholipase A2 and activation of protein kinase C contribute to the final lethal event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, M. E. and Meister, A., 1987, Intracellular delivery of cysteine. Methods Enzymol. 143:313.

    Article  PubMed  CAS  Google Scholar 

  • Braughler, J. M., Duncan, L. A. and Goodman, T., 1985, Calcium enhances in vitro free radical-induced damge to brain synaptosomes, mitochondria and cultured spinal cord neurons. J. Neurochem. 45:1288.

    Article  PubMed  CAS  Google Scholar 

  • Chang, L. W., Gilbert, M. and Sprecher, J., 1978, Modificaiton of methyl mercury neurotoxicity by vitamin E. Environ. Res. 17:356.

    Article  PubMed  CAS  Google Scholar 

  • Chang, L. W. and Suber, R., 1982, Protective effect of selenium on methyl mercury toxicity: A possible mechanism. Bull. Environ. Contam. Toxciol. 29:285.

    Article  CAS  Google Scholar 

  • Chavez, E. and Holguin, J. A., 1988, Mitochondrial calcium release as induced by mercuric ion. J. Biol. Chem. 263:3582.

    PubMed  CAS  Google Scholar 

  • Davies, K. J. A. and Goldberg, A. L., 1987. Oxygen radicals stimulate intracellular proteolysis and lipid peroxidation by independent mechanism in erythrocytes. J. Biol. Chem. 262:8220.

    PubMed  CAS  Google Scholar 

  • Davies, K. J. A. and Delsignore, M. E., 1987. Protein damage and degradation by oxygen radicals. III. Modification of secondary and tertiary structure. J. Biol. Chem. 262:9908.

    PubMed  CAS  Google Scholar 

  • Dethmers, J. K. and Meister, A., 1981. Glutathione export by human lymphoid cells: Depletion of glutathione by inhibition of its synthesis decreases export and increases sensitivity to irradiation. Proc. Natl. Acad. Sci. U.S.A. 78:7492.

    Article  PubMed  CAS  Google Scholar 

  • Duke, R. C., Chervenak, R. and Cohen, J. J., 1983. Endogenous endonuclease-induced DNA fragmentation: An early event in cell-mediated cytolysis. Proc. Natl. Acad. Sci. U.S.A. 80:6361.

    Article  PubMed  CAS  Google Scholar 

  • Ganther, H. E., Goudie, C., Sunde, M. L., Kopecky, M. J., Wagner, R., Oh, S-H., and Hoekstra, W. G., 1972. Selenium: Relation to decreased toxicity of methyl mercury added to diets containing tuna. Science 75:1122.

    Article  Google Scholar 

  • Ganther, H. E., 1978. Methylmercury toxicity and metabolism by selenium and vitamin E: Possible mechanism. Environ. Health Perspect. 25:71.

    Article  PubMed  CAS  Google Scholar 

  • Ganther, H. E., 1980. Interactions of vitamin E and selenium with mercury and silver. Ann. N. Y. Acad. Sci. 355:212.

    Article  PubMed  CAS  Google Scholar 

  • Griffith, O. W. and Meister, A., 1979. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J. Biol. chem. 254:7558.

    PubMed  CAS  Google Scholar 

  • Hirota, Y., Yamguchi, S., Shimojoh, N. and Sano, K-I, 1980. Inhibitory effect of methylmercury on the activity of glutathione peroxidase. Toxicol. Appl. Phrmacol. 53:174.

    Article  CAS  Google Scholar 

  • Ichikawa, H., Ronowicz, K., Hicks, M. and Gebicki, J. M., 1987. Lipid peroxidation is not the cause of lysis of human erythrocytes exposed to inorganic or methylmercury. Arch. Biochem. Biophys. 259:45.

    Article  Google Scholar 

  • Iwata, H., Okamoto, H. and Ohsawa, Y., 1973. Effect of selenium on methyl mercury poisoning. Res. Commun. Pathol. Pharmacol. 5:673.

    CAS  Google Scholar 

  • Jones, D. P., Thor, H., Smith, M. T., Jewell, S. A. and Orrenius, S., 1983. Inhibition of ATP-dependent microsomal calcium ion sequestration during oxidative stress and its prevention by glutathione. J. Biol Chem. 258:6390.

    PubMed  CAS  Google Scholar 

  • Kasuya, M., 1975. The effect of vitamin E on the toxicity of alkyl mercurials on nervous tissue in culture. Toxicol. Appl. Pharmacol. 32:347.

    Article  PubMed  CAS  Google Scholar 

  • Kasuya, M., 1976. Effect of selenium on the toxicity of methylmercury on nervous tissue in culture. Toxicol. Appl. Pharmacol. 35:11.

    Article  PubMed  CAS  Google Scholar 

  • Kauppinen, R. A., Komulainen, H. and Taipale, H., 1989. Cellular mechanisms underlying the increase in cytosolic free calcium concentration induced by methylmercury in cerebrocortical synaptosomes from guinea pig. J. Pharmacol. Exp. Ther. 248:1248.

    PubMed  CAS  Google Scholar 

  • Meister, A., 1983. Selective modification of glutathione metabolism. Science 220:4761.

    Article  Google Scholar 

  • Messer, A., 1977. The maintenance and identification of mouse cerebellar granule cells in monolayer culture. Brain Res. 130:1.

    Article  PubMed  CAS  Google Scholar 

  • Moore, W. R., Anderson, M. E., Meister, A., Murata, K., and Kimura, A., 1989. Increased capacity for glutathione synthesis enhances resistance to radiation in Escherichia coli: A possible model for mammalian cell protection. Proc. Natl. Acad. Sci. U.S.A. 86:1461.

    Article  PubMed  CAS  Google Scholar 

  • Nishigaki, S., Kamura, Y, Maki, T., Yamada, H., Shimamura, Y, Ochiai, S. and Kimura, Y, 1974. Mercury-selenium correlations in connection with body weight in muscle of sea fish. Ann. Rep. Tokyo Mat. Res. Lab. Pub.Health 25:235.

    CAS  Google Scholar 

  • Ohi, G., Nishigaki, S., Seki, H., Kamura, Y., Maki, T., Konno, H., Ochiai, S., Yamada, H., Shimamura, Y., Mizoguchi, I. and Yagyu, H., 1976. Efficacy of selenium in tuna and selenite in modifying methylmercury intoxicaiton. Environ. Res. 12:49.

    Article  PubMed  CAS  Google Scholar 

  • Orrenius, S., McConkey, D. J. and Nicotera, P., 1988. Mechanisms of oxidant-induced cell damage. In: Oxy-radicals in Molecular Biology and Pathology. Alan R. Liss, Inc., pp. 327-339.

    Google Scholar 

  • Pascoe, G. A. and Reed, D. J., 1989. Cell calcium, vitamin E and the thiol redox system in cytotoxicity. In: Free Radical Biology and Medicine 6:209.

    Article  CAS  Google Scholar 

  • Potter, S. D. and Matrone, G., 1977. A tissue culture model for mercury-selenium interactions. Toxicol. Appl. Pharmacol. 40:201.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, K. N. and Ramanujam, S., 1980. Vitamin E and vitamin C alter the effect of methylmercuric chloride on neuroblastoma and glioma cells in culture. Environ. Res 21:343.

    Article  PubMed  CAS  Google Scholar 

  • Reglinski, J., Hoey, S., Smith, W. E. and Sturrock, R. D., 1988. Cellular reponse to oxidative stress at sulfydryl group receptor sites on the erythrocyte membrane. J. Biol. Chem. 263:12360.

    PubMed  CAS  Google Scholar 

  • Sarafian, T. A., Cheung, M. K. and Verity, M. A., 1984. In vitro methyl mercury inhibition of protein synthesis in neonatal cerebellar perikarya. Neuropathol. Appl. Neurobiol. 10:85.

    Article  PubMed  CAS  Google Scholar 

  • Sarafian, T. and Verity, M. A., 1985. Inhibition of RNA and protein synthesis in isolated cerebellar cells by in vitro and in vivo methyl mercury. Neurochem. Pathol. 3:27.

    Article  PubMed  CAS  Google Scholar 

  • Sarafian, T. and Verity, M. A., 1986. Influence of thyroid hormones on rat cerebellar cell aggregation and survival in culture. Devel. Brain Res. 26:261.

    Article  CAS  Google Scholar 

  • Sarafian, T. and Verity, M. A., 1986. Mechanism of apparent transcription inhibition by methylmercury in cerebellar neurons. J. Neurochem. 47:625.

    Article  PubMed  CAS  Google Scholar 

  • Sarafian, T., Hagler, J., Vartavarian, L. and Verity, M. A., 1989. Rapid cell death induced by methylmercury in suspension of cerebellar granule neurons. J. Neuropathol. Exp. Neurol. 48:1.

    Article  PubMed  CAS  Google Scholar 

  • Shier, W. T. and DuBourdieu, D. J., 1983. Stimulation of phospholipid hydrolysis and cell death by mercuric chloride: Evidence for mercuric ion acting as a calcium-mimetic agent. Biochem. Biophys. Res. Commun. 110:758.

    Article  PubMed  CAS  Google Scholar 

  • Stacey, N. H. and Klaassen, K., 1981. Inhibition of lipid peroxidation with prevention of cellular injury in isolated rat hepatocytes. Toxicol. Appl. Pharmacol. 58:8, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Stacey, N. H. and Kappus, H., 1982. Cellular toxicity and lipid peroxidation in response to mercury. Toxicol. Appl. Pharmacol. 63:29.

    Article  PubMed  CAS  Google Scholar 

  • Tsan, M-F, Danis, E. H., DelVecchio, P. J. and Rosano, C. L., 1985, Enhancement of intracellular glutathione protects endothelial cells against oxidant damage. Biochem. Biophys. Res. Commun. 127:270.

    Article  PubMed  CAS  Google Scholar 

  • Verity, M. A., Brown, W. J. and Cheung, M., 1975. Organic mercurial encephalopathy: In vivo and in vitro effects of methyl mercury on synaptosomal respiration. J. Neurochem. 25:759.

    Article  PubMed  CAS  Google Scholar 

  • Weir, K., Sarafian, T., and Verity, M. A., 1990. Methylmercury induces paradoxical increase in reduced glutathione (GSH) in cerebellar granule cell culture. Toxicol. 10:25.

    Google Scholar 

  • Welsh, S. O. and Soares, J. H. Jr., 1976. The protective effect of vitamin E and selenium against methyl mercury toxicity in the Japanese quail. Nutrition Rep. Int. 13:43.

    CAS  Google Scholar 

  • Williamson, J. M. and Meister, A., 1981. Stimulation of hepatic glutathione formation by administration of L-2-oxothiazolidine-4-carboxylate, a 5-oxo-L-prolinase substrate. Proc. Natl. Acad. Sci. U.S.A. 78:936.

    Article  PubMed  CAS  Google Scholar 

  • Yagi, K., 1976. A simple fluorometric assay for lipoperoxide in blood plasma. Biochem. Med. 15:212.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Verity, M.A., Sarafian, T. (1991). Role of Oxidative Injury in the Pathogenesis of Methylmercury Neurotoxicity. In: Suzuki, T., Imura, N., Clarkson, T.W. (eds) Advances in Mercury Toxicology. Rochester Series on Environmental Toxicity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9071-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9071-9_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9073-3

  • Online ISBN: 978-1-4757-9071-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics