Skip to main content

Principal Components of Body Shape Variation within an Endemic Radiation of Threespine Stickleback

  • Chapter
Advances in Morphometrics

Part of the book series: NATO ASI Series ((NSSA,volume 284))

Abstract

Principal component analysis of superimposition coordinates and partial warp scores (i.e., RWs) are used to explore patterns of body shape variation among 32 samples of lacustrine threespine stickleback Gasterosteus aculeatus, from Cook Inlet, Alaska. Principal components from orthogonal least squares, orthogonal resistant fit, affine least squares and affine resistant fit superimpositions are compared with each other and with the RWs. The pattern of body shape variation described by the first component of all five methods is extremely similar. This pattern describes a body shape with caudally positioned dorsal spines, a poorly developed pelvic girdle and short median fins at one extreme of an axis and a body shape with cranially positioned dorsal spines, a robust pelvis and long median fins at the opposite extreme. This pattern suggests a predator effect, which is supported by differences in first component scores between sticklebacks inhabiting lakes with and without native predatory fish. The second component of the orthogonal analyses and the uniform parameters of the affine analyses describe similar patterns of body form variation. This component describes a body shape with a long snout, shallow body and long caudal peduncle at one extreme of an axis and a body shape with a short snout, deep body, and short, deep caudal peduncle at the opposite extreme. This pattern suggests a foraging effect. Interestingly, a foraging effect is supported only in lakes with native predatory fish. Sticklebacks inhabiting lakes without native predatory fish tend to have body shapes representing open-water foragers regardless of habitat type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Airoldi, J.-P. and B. K. Flury. 1988. An application of common principal component analysis to cranial morphometry of Microtus californicus and M. ochrogaster (Mammalia, Rodentia). Journal of Zoology, London 216: 41–43.

    Article  Google Scholar 

  • Banbura, J., M. Przybylski and P. Frankiewicz. 1989. Selective predation of the pike Esox lucius: comparison of lateral plates and some metric features of the three-spined stickleback Gasterosteus aculeatus. Zoologica Scripta 18: 303–309.

    Article  Google Scholar 

  • Baumgartner, J. V., M. A. Bell and P. H. Weinberg. 1988. Body form differences between the Enos Lake species pair of threespine sticklebacks. Canadian Journal of Zoology 66: 467–474.

    Article  Google Scholar 

  • Bell, M. A. 1984. Evolutionary phenetics and genetics. The threespine stickleback, Gasterosteus aculeatus, and related species. in B. J. Turner, (ed.), Evolutionary genetics of fishes. Plenum: New York.

    Google Scholar 

  • Bell, M. A. 1987. Interacting evolutionary constraints in pelvic reduction of threespine sticklebacks, Gasterosteus aculeatus ( Pisces, Gasterosteidae). Biological Journal of the Linnean Society 31: 347–382.

    Article  Google Scholar 

  • Bell, M. A. and S. A. Foster (eds.). 1994a. Evolutionary biology of the threespine stickleback. Oxford University Press: Oxford.

    Google Scholar 

  • Bell, M. A. and S. A. Foster. 1994b. Introduction. in M. A. Bell and S. A. Foster, (eds.). Evolutionary biology of the threespine stickleback. Oxford University Press: Oxford.

    Google Scholar 

  • Bell, M. A., G. Orti, J. A. Walker, and J. P. Koenings. 1993. Evolution of pelvic reduction in threespine stickleback: a test of competing hypotheses. Evolution 47: 906–914.

    Article  Google Scholar 

  • Bentzen, P. and J. D. McPhail. 1984. Ecology and evolution of sympatric sticklebacks (Gasterosteus): specializations for alternative trophic niches in the Enos lake species pair. Canadian Journal of Zoology 62: 2280–2286.

    Article  Google Scholar 

  • Bishop, T. D. and J. A. Brown. 1992. Threat-sensitive foraging by larval threespine stickleback (Gasterosteus aculeatus). Behavior Ecology and Sociobiology 31: 133–138.

    Article  Google Scholar 

  • Bookstein, F. L. 1989. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. Pat. Anal. Mac. Intel. 11:567–585

    Article  Google Scholar 

  • Bookstein, F. L. 1991. Morphometric tools for landmark Data. Geometry and biology. Cambridge University Press: Cambridge.

    Google Scholar 

  • Bourgeois, J. F., D. M. Blouw and M. A. Bell. In press. Multivariate analysis of geographic covariance between phenotypes and environments in the threespine stickleback, Gasterosteus aculeatus,from the Cook Inlet area, Alaska. Canadian Journal of Zoology.

    Google Scholar 

  • Campbell, N. A. and W. R. Atchley. 1981. The geometry of canonical variate analysis. Systematic Zoology 30: 268–280.

    Article  Google Scholar 

  • Chapman, R. E. 1990. Conventional Procrustes approaches. in F. J. Rohlf and F. L. Bookstein, (eds.), Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology Special Publication 2.

    Google Scholar 

  • Ehlinger, T. J. 1990. Habitat choice and phenotype-limited feeding efficiency in bluegill: individual differences and trophic polymorphism. Ecology 71: 886–896.

    Article  Google Scholar 

  • Ehlinger, T. J. and D. S. Wilson. 1988. Complex foraging polymorphism in bluegill sunfish. Proceedings of the National Academy of Science 85: 1878–1882.

    Article  CAS  Google Scholar 

  • Foster, S. and S. Ploch. 1990. Determinants of variation in antipredator behavior of territorial male threespine stickleback in the wild. Ethology 84: 281–294.

    Article  Google Scholar 

  • Francis, R. C., J. V. Baumgartner, A. C. Havens and M. A. Bell. 1986. Historical and ecological sources of variation among lake populations of threespine sticklebacks, Gasterosteus aculeatus, near Cook Inlet, Alaska. Canadian Journal of Zoology 64: 2257–2265.

    Article  Google Scholar 

  • Giles, N. 1983. The possible role of environmental calcium levels during the evolution of phenotypic diversity in Outer Hebridean populations of the three-spined stickleback, Gasterosteus aculeatus L. Canadian Journal of Zoology 56: 398–413.

    Google Scholar 

  • Goodall, C. 1991. Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society, B 53: 285–339.

    Google Scholar 

  • Gross, H. 1978. Natural selection by predators on the defensive apparatus of the three-spined stickleback, Gasterosteus aculeatus L. Canadian Journal of Zoology 56: 398–413.

    Article  Google Scholar 

  • Hagen, D. W. and L. G. Gilbertson. 1972. Geographic variation and environmental selection in Gasterosteus aculeatus L. in the Pacific Northwest, America. Evolution 26: 32–51.

    Google Scholar 

  • Hagen, D. W. and L. G. Gilbertson. 1973. Selective predation and the intensity of selection acting upon the lateral plates of threespine sticklebacks. Heredity 30: 273–287.

    Article  Google Scholar 

  • Hoogland, R., D. Morris, and N. Tinbergen. 1957. The spines of sticklebacks (Gasterosteus and Pvgosteus) as a means of defense against predators. Behavior 10: 205–237.

    Article  Google Scholar 

  • Howland, H. C. 1974. Optimal strategies for predator avoidance: the relative importance of speed and maneuverability. Journal of Theoretical Biology 47: 333–350.

    Article  PubMed  CAS  Google Scholar 

  • Huntingford, F. and N. Giles. 1987. Individual variation in anti-predator responses in the three-spined stickleback (Gasterosteus aculeatus L.). Ethology 74: 205–210.

    Article  Google Scholar 

  • Huntingford, F. A., P. J. Wright and J. F. Tierney. 1994. Adaptive variation in antipredator behavior in threespine stickleback in M. A. Bell and S. A. Foster (eds.), Evolutionary biology of the threespine stickleback. Oxford University Press: Oxford.

    Google Scholar 

  • Krzanowski, W. J. 1988. Principles of multivariate analysis. Clarendon Press: Oxford, U. K.

    Google Scholar 

  • Larson, G. L. 1976. Social behavior and feeding ability of two phenotypes of Gasterosteus aculeatus in relation to their spatial and trophic segregation in a temperate lake. Canadian Journal of Zoology 54: 107–121.

    Article  Google Scholar 

  • Lavin, P. A., and J. D. McPhail. 1985. The evolution of freshwater diversity in the threespine stickleback (Gasterosteus aculeatus): site-specific differentiation of trophic morphology. Canadian Journal of Zoology 63: 2632–2638.

    Article  Google Scholar 

  • Lavin, P. A. and J. D. McPhail. 1986. Adaptive divergence of trophic phenotype among freshwater populations of the threespine stickleback (Gasterosteus aculeatus). Can. J. Fish. Aquat. Sci. 43: 2455–2463.

    Google Scholar 

  • Marcus, L. F. 1990. Traditional morphometrics. Pages 77–122 in F. J. Rohlf and F. L. Bookstein, (eds.), Proceedings of the Michigan Morphometrics Workshop. University of Michigan Museum of Zoology Special Publication 2.

    Google Scholar 

  • Manzer, J. I. 1976. Distribution, food, and feeding of the threespine stickleback, Gasterosteus aculeatus, in Great Central Lake, Vancouver Island, with comments on competition for food with juvenile sockeye salmon, Oncorhynchus nerka. Fish. Bull. 74: 647–668.

    Google Scholar 

  • McPhail, J. D. 1984. Ecology and evolution of sympatric sticklebacks (Gasterosteus): morphological and genetic evidence for a species pair in Enos Lake, British Columbia. Canadian Journal of Zoology 62: 1402–1408.

    Article  Google Scholar 

  • McPhail, J. D. 1994. Speciation and the evolution of reproductive isolation in the sticklebacks (Gasterosteus) of southwestern British Columbia in M. A. Bell and S. A. Foster (eds.), Evolutionary biology of the threespine stickleback. Oxford University Press: Oxford.

    Google Scholar 

  • Meacham, C. A. and T. Duncan. 1990. MorphoSys. Version 1. 29. University Herbarium, University of California: Berkeley.

    Google Scholar 

  • Moodie, G. E. E. 1972. Predation, natural selection and adaptation in an unusual threespine stickleback. Heredity 28: 155–167.

    Article  Google Scholar 

  • Moodie, G. E. E., J. D. McPhail, and D. W. Hagen. 1973. Experimental demonstration of selective predation on Gasterosteus aculeatus. Behavior 47: 95–105.

    Article  Google Scholar 

  • Moodie, G. E. E., and T. E. Reimchen. 1976. Phenetic variation and habitat differences in Gasterosteus populations of the Queen Charlotte Islands. Systematic Zoology 25: 49–61.

    Article  Google Scholar 

  • Norton, S. F. 1991. Capture success and diet of cottid fishes: the role of predator morphology and attack kinematics. Ecology 72: 1807–1819.

    Article  Google Scholar 

  • Reimchen, T. E. 1983. Structural relationships between spines and lateral plates in threespine stickleback (Gasterosteus aculeatus). Evolution 37: 931–946.

    Article  Google Scholar 

  • Reimchen, T. E. 1988. Inefficient predators and prey injuries in a population of giant stickleback. Canadian Journal of Zoology 66: 2036–2044.

    Article  Google Scholar 

  • Reimchen, T. E. 1991. Trout foraging failures and the evolution of body size in stickleback. Copeia 1991: 1098–1104.

    Article  Google Scholar 

  • Reimchen, T. E. 1992. Injuries on stickleback from attacks by a toothed predator (Oncorhynchus) and implications for the evolution of lateral plates. Evolution 46: 1124–1230.

    Article  Google Scholar 

  • Reimchen, T. E. 1994. Predators and morphological evolution in threespine stickleback in M. A. Bell and S. A. Foster, (eds.), Evolutionary biology of the threespine stickleback. Oxford University Press: Oxford.

    Google Scholar 

  • Reimchen, T. E., E. M. Stinson and J. S. Nelson. 1985. Multivariate differentiation of parapatric and allopatric populations of threespine stickleback in the Sangan River watershed, Queen Charlotte Islands. Canadiaon Journal of Zoology 63: 2944–2951.

    Google Scholar 

  • Rogers, D. E. 1968. A comparison of the food of sockeye salmon fry and threespine sticklebacks in the Wood River lakes in R. L. Burgner (ed.), Further studies of Alaska sockeye salmon. University of Washington: Seattle.

    Google Scholar 

  • Rohlf. F. J. 1993. Relative warp analysis and an example of its application to mosquito wings. Pages 131–159 in L. F. Marcus, E. Bello, and A. Garcia-Valdecasas, (eds.), Contributions to morphometrics. Monografias del Museo Nacional de Cienceias Naturales 8, Madrid.

    Google Scholar 

  • Rohlf, F. J. and D. Slice. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39: 40–59.

    Article  Google Scholar 

  • Schluter, D. 1993. Adaptive radiation in sticklebacks: Size, shape and habitat use efficiency. Ecology 74: 699–709.

    Article  Google Scholar 

  • Schluter, D., and J. D. McPhail. 1992, Ecological character displacement and speciation in sticklebacks. American Naturalist 140: 85–108.

    Article  PubMed  CAS  Google Scholar 

  • Siegel A. F. and R. H. Benson, 1982. A robust comparison of biological shapes. Biometrics 38: 341–350.

    Article  PubMed  CAS  Google Scholar 

  • Skulason, S., D. L. G. Noakes, and S. S. Snorrason. 1989. Ontogeny of trophic morphology in four sympatric morphs of arctic chary Salvelinus alpinus in Thingvallavatn, Iceland. Biolological Journal of the Linnean Society 38: 281–301.

    Article  Google Scholar 

  • Swain, D. P. 1992. The functional basis of natural selection for vertebral traits of larvae in the stickleback Gasterosteus aculeatus. Evolution 46: 987–997.

    Article  Google Scholar 

  • Taylor, E. B. and J. D. McPhail. 1986. Prolonged and burst swimming in anadromous and freshwater threespine stickleback, Gasterosteus aculeatus. Canadian Journal of Zoology 64: 416–420.

    Article  Google Scholar 

  • Thorpe, R. S. 1988. Multiple group principal component analysis and population differentiation. Journal of Zoology, London 216: 37–40.

    Article  Google Scholar 

  • Voss, R. S., L. F. Marcus and P. Escalante. 1990. Morphological evolution in muroid rodents I. Conservative patterns of craniometric covariance and their ontogenetic basis in the neotropical genus Zygodontomys. Evolution 44: 1568–1587.

    Article  Google Scholar 

  • Walker, J. A. 1994. Morphometrika. Geometric Morphometrics for the Macintosh. Department of Anatomical Sciences, State University of New York at Stony Brook, New York, USA

    Google Scholar 

  • Webb, P. W. 1977. Effects of median-fin amputation on fast-start performance of rainbow trout (Salmo gairdneri). Journal of Experimental Biology 68: 123–135.

    Google Scholar 

  • Webb, P. W. 1978. Fast-start performance and body form in seven species of teleost fish. Journal of Experimental Biology 74: 211–226.

    Google Scholar 

  • Webb, P. W. 1983. Speed, acceleration and maneuverability of two teleost fishes. Journal of Experimental Biology 102: 115–122.

    Google Scholar 

  • Webb, P. W. 1984. Body form, locomotion and foraging in aquatic vertebrates. American Zoologist. 24: 107–120.

    Google Scholar 

  • Weihs, D. 1972. A hydrodynamical analysis of fish turning maneuvers. Proceedings of the Royal Society of London,.B, 182: 59–72.

    Article  Google Scholar 

  • Weihs, D. 1973. The mechanism of rapid starting of slender fish. Biorheology 10: 343–350.

    PubMed  CAS  Google Scholar 

  • Weihs, D. and P. W. Webb. 1984. Optimal avoidance and evasion tactics in predator-prey interactions. Journal of Theoretical Biology 106: 189–206.

    Article  Google Scholar 

  • Whoriskey, F. G. and R. J. Wootton. 1987. The swimming endurance of threespine sticklebacks, Gasterosteus aculeatus L., from the Afon Rheidol, Wales. J. Fish Biol. 30: 335–339.

    Article  Google Scholar 

  • Wootton, R. J. 1976. The biology of the sticklebacks. Academic Press: New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walker, J.A. (1996). Principal Components of Body Shape Variation within an Endemic Radiation of Threespine Stickleback. In: Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P., Slice, D.E. (eds) Advances in Morphometrics. NATO ASI Series, vol 284. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9083-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9083-2_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9085-6

  • Online ISBN: 978-1-4757-9083-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics