Skip to main content

Radial and Directed Transverse Flow in Heavy-Ion Collisions

  • Chapter
Advances in Nuclear Dynamics 2

Abstract

One of the fundamental problems remaining in the field of heavy-ion reaction dynamics is the description of nuclear matter in terms of an equation of state (EOS). Collective motion is ordered motion characterized by the correlation between particle positions and momenta of a dynamic origin. The study of collective flow in nucleus-nucleus collisions can provide information about the nuclear EOS.[1,2] Collective radial expansion of particle emission from central nuclear collisions, radial flow, is primarily attributed to the conversion of thermal and compressional energy into work through a pressure gradient in the hydrodynamic limit.[3] Consequently, the fragments acquire a net outward radial velocity in addition to their random thermal component, which is evident from the increased curvature in the single-particle energy spectrum. As impact parameter increases there is anisotropy in the pressure, resulting in a transverse flow of nuclear matter in the directions of lowest pressure. Collective transverse flow in the reaction plane disappears at an incident energy, termed the balance energy E bal ,[4] where the attractive scattering dominant at energies around 10 MeV/nucleon balances the repulsive interactions dominant at energies around 400 MeV/nucleon.[5,6] We present results from a systematic study for the incident energy and impact parameter dependence of collective flow from 40Ar+45Sc collisions at E = (35 – 115) MeV/nucleon. Comparison to predictions of dynamical transport models showing agreement with our measured values of flow observables are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Stöcker and W. Greiner, High Energy Heavy Ion Collisions - Probing the Equation of State of Highly Excited Hadronic Matter, Phys. Rep. 137: 277 (1986).

    Article  ADS  Google Scholar 

  2. H.H. Gutbrod, A.M. Poskanzer, and H.G. Ritter, Plastic Ball Experiments, Rep. Prog. Phys. 52: 1267 (1989).

    Article  ADS  Google Scholar 

  3. P.J. Siemens and J.O. Rasmussen, Evidence for a Blast Wave from Compressed Nuclear Matter, Phys. Rev. Lett. 42: 880 (1979).

    Article  ADS  Google Scholar 

  4. C.A. Ogilvie et al.,Disappearance of Flow and its Relevance to Nuclear Matter Physics, Phys. Rev. C42: RIO (1990).

    Google Scholar 

  5. J.J. Molitoris and H. Stöcker, Stopping Power, Equilibration, and Collective Flow in the Reactions Ar + Pb and Nb + Nb - A Theoretical Analysis, Phys. Lett. 162B: 47 (1985).

    Google Scholar 

  6. D. Krofcheck et al.,Disappearance of Flow in Heavy-Ion Collisions, Phys. Rev. Lett. 63: 2028 (1989).

    Google Scholar 

  7. G.D. Westfall et al.,A Logarithmic Detection System Suitable for a 4ir Array, Nvcl. Instr. and Methods A238: 347 (1985).

    Google Scholar 

  8. C. Cavata et al.,Determination of the Impact Parameter in Relativistic Nucleus-Nucleus Collisions, Phys. Rev. C42: 1760 (1990).

    Google Scholar 

  9. W.J. Llope et al.,Autocorrelations and Intermediate-Mass-Fragment Multiplicities in Central Heavy-Ion Collisions, Phys. Rev. C 51: 1325 (1995).

    Google Scholar 

  10. R. Pak et al.,Impact Parameter Dependence of the Disappearance of Transverse Flow in Nuclear Collisions, Phys. Rev. C (in press).

    Google Scholar 

  11. H.W. Barz et al., Flow Effects in Intermediate-Energy Nuclear Collisions, Nvcl. Phys. A531: 453 (1991).

    Google Scholar 

  12. W. Bauer et al.,Large Radial Flow in Nucleus-Nucleus Collisions, Phys. Rev. C 47: R1838 (1993).

    Google Scholar 

  13. S.C. Jeong et al.,Collective Motion in Selected Central Collisions of Au on Au at 150A MeV, Phys. Rev. Lett. 72: 3468 (1994).

    Google Scholar 

  14. P. Danielewicz, Effects of Compression and Collective Expansion on Particle Emission from Central Heavy-Ion Reactions, Phys. Rev. C 51: 716 (1995).

    Article  ADS  Google Scholar 

  15. M.A. Lisa et al.,Radial Flow in Au + Au Collisions at E _ (0.25–1.15)A GeV, Phys. Rev. Lett. 72: 2662 (1995).

    Google Scholar 

  16. P. Danielewicz and Q. Pan, Blast of Light Fragments from Central Heavy-Ion Collisions, Phys. Rev. C 46: 2002 (1992).

    Google Scholar 

  17. W.C. Hsi et al.,Collective Expansion in Central Au + Au Collisions, Phys. Rev. Lett. 73: 3367 (1994).

    Google Scholar 

  18. K.G.R. Doss et al.,Transverse Energy Production and the Equation of State of Nuclear Matter, Mod. Phys. Lett. A 3: 849 (1988).

    Google Scholar 

  19. R. Pak et al.,Radial Flow in 40Ar+45Sc Reactions at E = (35–115) MeV/nucleon, submitted to Phys. Rev. C.

    Google Scholar 

  20. W.K. Wilson, R. Lacey, C.A. Ogilvie, and G.D. Westfall, Reaction Plane Determination Using Azimuthal Correlations, Phys. Rev. C45: 738 (1992).

    Google Scholar 

  21. P. Danielewicz and G. Odyniec, Transverse Momentum Analysis of Collective Motion in Relativistic Nuclear Collisions, Phys. Lett. 157B: 146 (1985).

    Google Scholar 

  22. J.P. Sullivan et al.,Disappearance of Flow as a Function of Impact Parameter and Energy in Nucleus-Nucleus Collisions, Phys. Lett. B 249: 8 (1990).

    Google Scholar 

  23. S. Soff et al.,Disappearance of Flow, Phys. Rev. C 51: 3320 (1995).

    Google Scholar 

  24. G.D. Westfall et al.,Mass Dependence of the Disappearance of Flow in Nuclear Collisions, Phys. Rev. Lett. 71: 1986 (1993).

    Google Scholar 

  25. D. Klakow, G. Welke, and W. Bauer, Nuclear Flow Excitation Function, Phys. Rev. C48: 1982 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pak, R. et al. (1996). Radial and Directed Transverse Flow in Heavy-Ion Collisions. In: Bauer, W., Westfall, G.D. (eds) Advances in Nuclear Dynamics 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9086-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9086-3_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9088-7

  • Online ISBN: 978-1-4757-9086-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics