Skip to main content

Abstract

If one tries to solve the inverse problem in single fiber electromyography (SFEMG), the question is which signal to consider as the proper source signal. Often the intracellular action potential (IAP) is taken as such. Measuring shape parameters and distances of Single Fiber Action Potentials and active fibers in muscle and comparing them with muscle structure model predictions reveals that it is transmembrane current which is the true source of the SFEMG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albers, B. A., Put, J. H. M., Wallinga, W., and Wirtz. P., 1989, Quantitative analysis of single muscle fibre action potentials recorded at known distances, Electroencephalogr. Clin. Neurophysiol. 73: 245–253.

    Article  Google Scholar 

  • Albers, B. A., Rutten, W. L. C.. Wallinga, W., and Boom, H. B. K., 1988, Microscopic and macroscopic volume conduction in skeletal muscle tissue, applied to simulation of single-fiber action potentials. Med. & Biol. Eng. & Comp. 26: 605–610.

    Google Scholar 

  • Albers. B. A., Rutten, W. L. C., Wallinga, W., and Boom, H. B. K., 1986, A model Study on the influence of structure and membrane capacitance on volume conduction in skeletal muscle tissue, IEEE Trans. Biomed. Eng. 33: 681–689.

    Article  Google Scholar 

  • Almers, W., Stanfield, P. R., Stühmer, W., 1983, Lateral distribution of sodium and potassium channels in frog skeletal: measurements with a patch clamp technique, J. Physiol. 336: 261–284.

    Google Scholar 

  • Clark, J. W. Jr., Greco, E. C., Harman, T. L., 1978, Experience with a Fourier method for determining the extracellular potential fields of excitable cells with cylindrical geometry, CRC Crit. Rev. in Bioeng. 3: 1–22.

    Google Scholar 

  • Clark, J., and Plonsey, R., 1966, A mathematical Evaluation of the Core Conductor Model, Biophys. J. 6: 95.

    Article  Google Scholar 

  • Fedida, D., Sethi, S., Mulder, B. J. M., and Ter Keurs, H. E. D. J., 1990, An ultracompliant glass microelectrode for intracellular recording, Am. J. Physiol. 258(Cell Physiol. 27): C164 - C170.

    Google Scholar 

  • Ganapathy, N., Clark, J. W. Jr., and Wilson, O. B., 1987, Extracellular potentials from skeletal muscle, Math. Biosc. 83: 61–96.

    Article  MATH  Google Scholar 

  • Gath, I., and Stâlberg, E., 1978, The calculated radial decline of the extracellular action potential compared with in situ measurements in the human biceps, Electroencephalogr. Clin. Neurophysiol. 44: 547–552.

    Article  Google Scholar 

  • Gath, L, and Stâlberg, E., 1979, Measurement of the uptake area of small size electromyographic electrodes, IEEE Trans Biomed. Eng. 26: 374–376.

    Article  Google Scholar 

  • Gerald, C. F., Wheatley, P. O., 1989, Applied Numerical Analysis, 4th ed., Adison-Wesley Pub. Co., Reading, Ma.

    MATH  Google Scholar 

  • Gielen, F. L. H., Wallinga, W., Boon, K. L., 1984, Electrical conductivity of skeletal muscle tissue: experimental results from different muscles in vivo, Med. & Biol. Eng & Comput. 22: 569–577.

    Article  Google Scholar 

  • Gielen, F. L.. Cruts, H. E. P., Albers, B. A., Boon, K. L., Wallinga, W., and Boom, H. B. K., 1986, Model of the electrical conductivity of skeletal muscle based on tissue structure, Med. & Biol. Eng & Comput. 24: 34–40.

    Article  Google Scholar 

  • Hamill O. P., Marty, A.. Neher, E., Sakmann, B., and Sieworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pfluegers Arch. 391: 85–100.

    Google Scholar 

  • Hennens, H. J., van Bruggen, T. A. M.. Baten, C. T. M., Rutten, W. L. C., and Boom, H. B. K., 1992, The median frequency of the surface EMG power spectrum in relation to motor unit firing and action potential properties, J Electromyography Kin. 2: 15–25.

    Google Scholar 

  • Lorente de Nó, R.. 1947. Analysis of the distribution of action currents of nerve fiber in volume conductors, Stud. Rockefeller Inst. Med. Res. 132: 384.

    Google Scholar 

  • Meier, J. H.. Rutten, W. M. L.. Zoutman, A. E., Boom, H. B. K., andBergveld, P., 1992, Simulation of multipolar fiber selective neural stimulation using intrafascicular electrodes, IEEE Trans. Biomed. Eng. 39: 122–134.

    Article  Google Scholar 

  • Milton, R. L., Lupa, M. T., and Caldwell, J. H., 1992, Fast and slow twitch muscle fibers differ in their distributions of Na channels near the endplate, Neurosci. Lett. 135: 41–44.

    Article  Google Scholar 

  • Plonsey, R., 1969, Bioelectric Phenomena. New York: McGraw-Hill.

    Google Scholar 

  • Plonsey, R., and Barr, R., 1982, The four-electrode resistivity technique as applied to cardiac muscle, IEEE Trans. Biomed. Eng. 29: 541–544.

    Article  Google Scholar 

  • Rosenfalck, P., 1969, Intra-and extracellular potential fields of active nerve and muscle fibers. A physico-mathematical analysis of different models, Akademisk Forlag, Copenhagen, Denmark.

    Google Scholar 

  • Roth, B. J., and Gielen, L. H., 1987, A comparison of two models for calculating the electrical potential in skeletal muscle, Ann. Biomed. Eng. 15: 591–602.

    Article  Google Scholar 

  • Stegeman, D. F., and Linssen, W. H. J. P., 1992, Muscle fiber action potential changes and surface EMG: a simulation study, J. Electromyography Kin. 2: 130–140.

    Article  Google Scholar 

  • Van Veen, B. K., Wolters, H., Wallinga, W., Rutten, W. L. C., and Boom, H. B. K., 1993, The bioelectrical source in computing single muscle fiber action potentials, Biophys. J 64: 1492–1498.

    Article  Google Scholar 

  • Van Veen, B. K., Rijkhoff, N. J. M., Rutten, W. L. C., Wallinga, W., and Boom, H. B. K., 1992, Potential distribution and single-fiber action potentials in a radially bounded muscle model, Med. & Biol. Eng & Comput. 30: 303–310.

    Article  Google Scholar 

  • Van Veen, B. K.. Mast. E., Busschers, R., Verloop, A. J., Wallinga, W., Rutten, W. L. C., Gerrits, P. O., and Boom, H. B. K., 1994, Single fibre action potentials in skeletal muscle related to recording distances, J. Electromyography Kinesioly, 4: 37–46.

    Article  Google Scholar 

  • Wallinga, W., Gielen, F. L. H., Wirtz, P., de Jong, P., and Broenink, J., 1985, The different intracellular action potentials of fast and slow muscle fibers, Electroencephalogr Clin. iVeurophi’siol. 60: 539–547.

    Article  Google Scholar 

  • Wallinga W., Albers, B. A., Put, J. M. H., Rutten, W. L. C., and Wirtz, P., 1988, Activity of single muscle fibtres recorded at known distances. In: Electrophvsiological Kinesiologv, Wallinga. W.. Boom, H. B. K., and de Vries, J. (eds.). Elsevier Science Publishers: Amsterdam, pp. 221–224.

    Google Scholar 

  • Wolters, H. W., Wallinga, W., and Ypey, D. L., 1991, Recording of membrane current and action potential on the same spot in mammalian skeletal muscle fibers. Pflueger.s Arch. 418: R152.

    Google Scholar 

  • Wolters, H., Wallinga, W., Ypey, D. L., and Boom, H. B. K., 1994, Ionic currents during action potentials in mammalian skeletal muscle fibers analyzed with loose patch clamp, Am. J. Phr.siol. (Cell Physiol. 36): C 1699-C 1706.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boom, H.B.K., Wallinga, W. (1996). Source Characteristics from Inverse Modeling of EMG Signals. In: Gath, I., Inbar, G.F. (eds) Advances in Processing and Pattern Analysis of Biological Signals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9098-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9098-6_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9100-6

  • Online ISBN: 978-1-4757-9098-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics