Skip to main content

Observing Reactions via Flow Injection Scanning Tunneling Microscopy

  • Chapter
Atomic Force Microscopy/Scanning Tunneling Microscopy 2

Abstract

The scanning tunneling microscope (STM) is used to view conductive and semiconductive surfaces to obtain topographic and structural information. A number of literature reports describe molecules absorbed on surfaces. We describe a flow injection system which allows imaging before, during, and after a surface reaction. The flow injection system consists of a flow cell in which a solution is pumped over a sample via a flow injector and a peristaltic pump during STM imaging. Results indicate that atomic imaging can be maintained under a rapidly-flowing solution stream. This system can provide a way to observe reactions occurring on surfaces. Preliminary applications of the system that include the etching of a metal surface, attachment of thiols on a gold surface, and attachment of polymers onto highly ordered pyrolytic graphite (HOPG) step defects are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.S. Foster, J.E. Frommer, and P.C. Arnett, Monecular manipulation using a tunnelling microscope, Nature, 331: 324–326 (1988).

    Article  CAS  Google Scholar 

  2. Y.L. Lyubchenko, S.M. Lindsay, J.A. DeRose, and T. Thundat, A technique for stable adhesion of DNA to a modified graphite surface for imaging by scanning tunneling microscopy“ J. Vac. Sci. Technol. A9: 1288–1290 (1991).

    Article  CAS  Google Scholar 

  3. M. G. Youngquist, R. J. Driscoll, T.R. Coley, W.A. Goddard, and.1.D. Baldeschwieler, Scanning tunneling microscopy of DNA atom-resolved imaging general observation and possible contrast mechanism, J. Yac. Sci. Technol., A9: 1304–1308 (1991).

    CAS  Google Scholar 

  4. W. Li, J.A. Virtanen, and R.M. Penner, A nanometer-scale galvanic cell, J. Phys. Chem., 96: 6529–6532 (1992).

    Article  CAS  Google Scholar 

  5. J. F. Womelsdorf, W. C. Ermler, and C. J. Sandroff, Imaging of colloidal gold on graphite by scanning tunneling microscopy: isolated particles, aggregates, and ordered arrays, J. Phys. Chem., 95: 503–505 (1991).

    Article  CAS  Google Scholar 

  6. T. J. McMaster, H. Carr, M. J. Miles, P. Cairns, and V. J. Morris, Polypeptide structures imaged by the scanning tunneling microscope, J. Vac. Sci. Technol., A8: 648–651 ( 1990.

    Google Scholar 

  7. C. R. Clemmer and T. P. Beebe, Graphite: A mimic for DNA and other biomolecules in scanning tunneling microscope studies, Science, 251: 640–642 (1991).

    Article  CAS  Google Scholar 

  8. M. L. Myrick, N.V. Hud, S. M. Angel, and D.G. Garvis, Chemical Physics Letters, 180: 156–160 (1991).

    Article  CAS  Google Scholar 

  9. T. Yoshimura, S. Tatsuura, and W. Sotoyama, Polymer films formed with monolayers growth steps by molecular layer deposition, Appl. Phys. Leu., 59: 482–484 (1991).

    Article  CAS  Google Scholar 

  10. Y.T. Kim and A. J. Bard, Imaging and etching of se110-assembled n-Octadecanethiol layers on gold with the scanning tunneling microscope,“ Langmuir, 8: 1096–1102 (1992).

    Article  CAS  Google Scholar 

  11. C.A. Widrig, C.A. Alves, M.D. Porter, Scanning tunneling microscopy of ethanethiolate and nOctadecanethiolate Monolayers spontaneously abserbed at gold surfaces, J. Anl. Chem. Soc. 113: 2805–2810 (1991).

    Article  CAS  Google Scholar 

  12. N. J. Tao and S.M. Linsay, Observations of the 22x30.5 reconstruction of Au(111) under aqueous solutions using scanning tunnelling microscope,“ J. Appl. Phys. 70: 5141–5143 (1991).

    Article  CAS  Google Scholar 

  13. J.D. Noll. J.B. Cooper, and M.L. Myrick, Analysis of highly ordered pyrolytic graphite step defects via scanning tunneling microscopy, J. Vac. Sci. Tech. B, B11: 2006–2011 (1993).

    Article  Google Scholar 

  14. T. Yoshimura, S. Tatsuura, and W. Sotoyama, Polymer films formed with monolayers gorwth steps by molecular layer deposition, Appl. Phys. Len., 59: 482–484 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Noll, J.D., Van Patten, P.G., Myrick, M.L. (1997). Observing Reactions via Flow Injection Scanning Tunneling Microscopy. In: Cohen, S.H., Lightbody, M.L. (eds) Atomic Force Microscopy/Scanning Tunneling Microscopy 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9325-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9325-3_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9327-7

  • Online ISBN: 978-1-4757-9325-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics