Skip to main content

Elliptic Atomic States

  • Chapter
Atoms in Strong Fields

Part of the book series: NATO ASI Series ((NSSB,volume 212))

  • 293 Accesses

Abstract

We solve here part of the Lorentz-Schrödinger conjecture bearing on the definition of atomic states which mimic the classical Bohr-Sommerfeld-Kepler orbits with minimum quantum fluctuations. These states are uniquely defined from symmetry considerations and are stationary states of the Coulomb hamiltonian. They exhibit the best spatial localization it is possible to achieve within quantum-mechanical constraints, on a classical Kepler ellipse. Explicit expansions of these “elliptic” states onto the spherical and parabolic basis are given. We further show that the experimental production of such states is possible from a crossed electric and magnetic fields arrangement combined with laser excitation. The method has already been experimentally demonstrated in the special case of the production of circular Rydberg atoms. We finally conclude with some applications of this technique to spectroscopy and fundamental questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Schrödinger, Naturwissens. 14, 664 (1926).

    Article  ADS  MATH  Google Scholar 

  2. L.S. Brown, Am. J. Phys. 41, 525 (1973).

    Article  ADS  Google Scholar 

  3. J. Mostowski, Lett. Math. Phys. 2, 1 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  4. D.R. Sneider, Am. J. Phys. 57, 801 (1983).

    Article  ADS  Google Scholar 

  5. J. Parker and C.R. Stroud, Phys. Rev. Lett. 56, 716 (1986).

    Article  ADS  Google Scholar 

  6. J.A. Yeazell and C.R. Stroud, Phys. Rev. A, 35, 2806 (1987).

    Article  ADS  Google Scholar 

  7. L.D. Noordam, A. Ten Wolde, H.G. Muller, A. Lagendijk and H.B. Van Linden Van den Heuvell, J. Phys. B, L533 (1988).

    Google Scholar 

  8. R.J. Glauber, Phys. Rev. 130, 2529 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  9. R.J. Glauber, Phys. Rev. 131, 2766 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  10. J. Von Neumann, Math. Foundations of Quantum Mechanics (Princeton 1955).

    Google Scholar 

  11. J.C. Gay and D. Delande in Atomic Excitation and Recombination in External Fields. M.H. Nayfeh and C.W. Clark Ed. (Gordon and Breach, NY. 1985).

    Google Scholar 

  12. F. Penent, D. Delande, F. Biraben and J.C. Gay, Optics Comm. 49, 184 (1984).

    Article  ADS  Google Scholar 

  13. F. Penent, D. Delande and J.C. Gay, Phys. Rev. A37, 4707 (1988).

    Article  ADS  Google Scholar 

  14. J.C. Gay, D. Delande and A. Bommicr, Submitted Phys. Rev. Lett, and Proceedings I.Q.E.C. (J.S.A.P. Tokyo 1988).

    Google Scholar 

  15. D. Delande and J.C. Gay, Europhys. Letter. 5, 4 (1988).

    Google Scholar 

  16. J. Hare, M. Gross and P. Goy, Phys. Rev. Lett. 61, 1938 (1988).

    Article  ADS  Google Scholar 

  17. V. Fock, Z. Phys. 98, 145 (1935).

    Article  ADS  Google Scholar 

  18. M. Bander and C. Itzykson, Rev. Mod. Phys. 38, 330 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  19. D. Delande, Thèse de Doctorat d’Etat (Paris-1988).

    Google Scholar 

  20. J.C. Gay in Spectrum of Atomic Hydrogen. Advances (G.W. Series Ed. World Scientific — 1988).

    Google Scholar 

  21. L.C. Biedenharn, Phys. Rev. 126, 845 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. W. Pauli, Z. Phys. 36, 339 (1926).

    ADS  Google Scholar 

  23. D. Herrick, Phys. Rev. A 26, 323 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  24. D. Delande and J.C. Gay, J. Phys. B19, L173 (1986).

    ADS  Google Scholar 

  25. A.M. Perelomov, Sov. Phys. Usp. 20, 703 (1977).

    Article  ADS  Google Scholar 

  26. F.T. Arrechi, E. Courtens, R. Gilmore and H. Thomas, Phys. Rev. A6, 2211 (1972).

    Article  ADS  Google Scholar 

  27. M. Ducloy, J. Physique (Paris) 36, 927 (1975).

    Article  Google Scholar 

  28. R.G. Hulet and D. Kleppner, Phys. Rev. Lett. 51, 1430 (1983).

    Article  ADS  Google Scholar 

  29. G. Spiess, M. Carre, L. Roussel, M. Gross and J. Hare, preprint (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bommier, A., Delande, D., Gay, JC. (1990). Elliptic Atomic States. In: Nicolaides, C.A., Clark, C.W., Nayfeh, M.H. (eds) Atoms in Strong Fields. NATO ASI Series, vol 212. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9334-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9334-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9336-9

  • Online ISBN: 978-1-4757-9334-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics