Skip to main content

Disturbance of Peptidoglycan Synthesis by Glycine and D-Methionine Creates a Signal for the ampG-Mediated Induction of AmpC-β-Lactamase in Escherichia coli

  • Chapter
Bacterial Growth and Lysis

Abstract

It has been reasoned that bacterial β-lactamases must have a “normal” physiological function, apart from inactivating β-lactam antibiotics, probably connected to the metabolism of cell wall peptidoglycan (Abraham and Chain, 1940; Saz and Lowery, 1979). In the same context, evidence has been brought forward which points to an essential role of peptidoglycan metabolism in the induced synthesis of β-lactamase in Gram-positive and Gram-negative bacteria (Collins, 1979; Tuomanen et al., 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, E.P. and Chain, E.B. (1940) An enzyme from bacteria able to destroy penicillin. Nature (Lond.) 146, 837–959.

    Article  CAS  Google Scholar 

  • Citri, N. and Pollock, M.R. (1966) The biochemistry and function of β-lactamases (penicillinase). Advanc. Enzymol. 28, 237–323

    CAS  Google Scholar 

  • Collins, J.F. (1979) The Bacillus licheniformis β-lactamase system, in “Beta-Lactamases”, (Hamilton-Miller, J.M.T. and Smith, J.T., Eds.) pp. 351–368, Academic Press, London.

    Google Scholar 

  • Cullmann, W., Dalhoff, A. and Dick, W. (1984) Nonspecific induction of β-lactamase in Enterobacter cloacae. J. Gen. Microbiol. 130, 1781–1786.

    PubMed  CAS  Google Scholar 

  • Dienes, L., Weinberger, J. H. and Madoff, S. (1950) The transformation of typhoid bacilli into L-forms under various conditions. J. Bacteriol. 59, 755–764.

    PubMed  CAS  Google Scholar 

  • Dienes, L. and Zamecnik, P.C. (1952) Transformation of bacteria into L-forms by amino acids. J. Bacteriol. 64, 770–771.

    PubMed  CAS  Google Scholar 

  • Gatus, B.J., Bell, S.M. and Jimenez, A.S. (1986) Comparison of glycine enhancement with cefoxitin induction of β-lactamase production in Enterobacter cloacae ATCC 13047. J. Antimicrob. Chemother. 21, 163–170.

    Article  Google Scholar 

  • Hammes, W., Schleifer, K.H. and Kandler, O. (1973) Mode of action of glycine on the biosynthesis of peptidoglycan. J. Bacteriol. 116, 1029–1053.

    PubMed  CAS  Google Scholar 

  • Honoré, N., Nicolas, M.H. and Cole, S.T. (1986) Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coll. EMBO J. 5, 3709–3714.

    PubMed  Google Scholar 

  • Joris, B., Ghuysen, J.M., Dive, G., Renard, A., Dideberg, O., Charlier, P., Frère, J.M., Kelly, J.A., Boyington, J.C, Moews, P.C. and Knox, J.R. (1988) The active-site-serine penicillin-recognizing enzymes as members of the Streptomyces R61 DD-peptidase family. Biochem. J. 250, 313–324.

    PubMed  CAS  Google Scholar 

  • Korfmann, G. and Sanders, C.C. (1989) ampG is essential for high-level expression of AmpC β-lactamase in Enterobacter cloacae. Antimicrob. Agents Chemother. 33, 1946–1951.

    Article  PubMed  CAS  Google Scholar 

  • Lark, C. and Lark, K.G. (1959) The effects of D-amino acids on Alcaligenes fecalis. Can. J. Microbiol. 5, 369–379.

    Article  PubMed  CAS  Google Scholar 

  • Lindberg, F., Westman, L. and Normark, S. (1985) Regulatory components in Citrobacter freundii ampC β-lactamase induction. Proc. Natl. Acad. Sci. USA 82, 4620–4624.

    Article  PubMed  CAS  Google Scholar 

  • Lindberg, F., Lindquist, S. and Normark, S. (1987) Inactivation of the ampD gene causes semi-constitutive overproduction of the inducible Citrobacter freundii β-lactamase. J. Bacteriol. 169, 4620–4624.

    Google Scholar 

  • Lindquist, S., Galleni, M., Lindberg, F. and Normark, S. (1989) Signalling protein in enterobacterial AmpC β-lactamase regulation. Mol. Microbiol. 3, 1091–1102.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist, S., Korfmann, G., Sanders, C.C., Schmidt, H., Martin, H.H., Weston-Hafer, K., and Normark, S. (1992) ampG, a signal transducer in chromosomal β-lactamase induction, submitted for publication.

    Google Scholar 

  • Martin, H.H., Schmidt, B., Bräutigam, S., Noguchi, H. and Matsuhashi, M. (1988) Initiation of induction of chromosomal β-lactamase by binding of inducing β-lactam antibiotics to low molecular-weight penicillin-binding proteins, in “Antibiotic Inhibition of Bacterial Cell Surface Assembly and function” (Actor, P., Daneo-Moore, L., Higgins, M.L., Salton, M.R.J. and Shockman, G.D., Eds.), pp. 494–501. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Ottolenghi, A.C. and Ayala, J.A. (1991) Induction of a class I β-Lactamase from Citrobacter freundii in Escherichia coll requires active ftsZ but not ftsA or ftsQ products. Antimicrob. Agents Chemother. 35, 2359–2365.

    Article  PubMed  CAS  Google Scholar 

  • Ottolenghi, A.C., Caparros, M. and De Pedro, M.A. (1991) Class I β-Lactamase induction in Enterobacter cloacae ATCC 13047 by D-methionine, glycine and D-tryptophan. Program Abstr. 31st Intersci. Conf. Antimicrob. Agents Chemother., abstr. 21, p. 102.

    Google Scholar 

  • Saz, A.K. and Lowery, D.L. (1979) Do β-lactamases have a biological function, in “Beta-Lactamases”, (Hamilton-Miller, J.M.T. and Smith, J.T., Eds.) pp. 465–479, Academic Press, London.

    Google Scholar 

  • Schmidt, H. (1992) Doctoral Dissertation, Technische Hochschule Darmstadt.

    Google Scholar 

  • Trippen, B., Hammes, W., Schleifer, K.H. and Kandler, O. (1976) Die Wirkung von D-Aminosäuren auf die Struktur und Biosynthese des Peptidoglycans. Arch. Microbiol. 109, 247–261.

    Article  PubMed  CAS  Google Scholar 

  • Tuomanen, E., Lindquist, S., Sande, S., Galleni, M., Light, K., Gage, D. and Normark, S. (1991) Coordinate regulation of β-lactamase induction and peptidoglycan composition by the ampD operon. Science 251, 201–203.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martin, H.H., Schmidt, H. (1993). Disturbance of Peptidoglycan Synthesis by Glycine and D-Methionine Creates a Signal for the ampG-Mediated Induction of AmpC-β-Lactamase in Escherichia coli . In: de Pedro, M.A., Höltje, JV., Löffelhardt, W. (eds) Bacterial Growth and Lysis. Federation of European Microbiological Societies Symposium Series, vol 65. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9359-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9359-8_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9361-1

  • Online ISBN: 978-1-4757-9359-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics