Skip to main content

Crystallography of Composite Flowers: Mode Locking and Dynamical Maps

  • Chapter
Biologically Inspired Physics

Part of the book series: NATO ASI Series ((NSSB,volume 263))

Abstract

Compositae (daisies, pinecones, asters, sunflowers) have a structure shown in Fig.1. Understanding this structure -one aspect of the field of phyllotaxis (leaf or floret arrangement)1–6- is a problem of crystallography: A surface is tiled with florets (the “atoms”) of roughly the same size, the majority of which are hexagonal (daisy) or rhombus-shaped (sunflower). The unusual feature as far as crystallography is concerned, is that the pattern has cylindrical symmetry. Florets sprout from the central stem (strictly, from a circle, the meristem, surrounding the geometrical center), one after the other, the younger ones pushing out their older siblings. We are dealing therefore with close-packing of deformable florets in cylindrical symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. d’A. W. Thompson, “On Growth and Form,” Cambridge Univ. Press (1942).

    Google Scholar 

  2. H. S. M. Coxeter, “Introduction to Geometry,” Wiley, New York (1961).

    MATH  Google Scholar 

  3. R. V. Jean, “Phytomathématique,” Presses Univ. du Québec, Montréal (1978); “Mathematical Approach to Pattern and Form in Plant Growth,” Wiley, NY (1984); Nomothetical modeling of spiral symmetry in biology, Symmetry 1: 81 (1990).

    Google Scholar 

  4. N. Rivier, Crystallography of spiral lattices, Mod. Phys. Lett. B 2: 953 (1988).

    Article  ADS  Google Scholar 

  5. A. J. Koch, “Des Cristaux Colloidaux à la Phyllotaxie, deux Exemples de Réseaux Cristallins en Géométrie Cylindrique,” Thèse, Université de Lausanne (1989).

    Google Scholar 

  6. N. Rivier, R. Occelli, J. Pantaloni and A. Lissowski, Structure of Bénard convection cells, phyllotaxis and crystallography in cylindrical symmetry, J. de Physique 45: 49 (1984).

    Article  Google Scholar 

  7. N. Rivier, A botanical quasicrystal, J. de Physique (Coll.) 47: C3–299 (1986).

    MathSciNet  Google Scholar 

  8. D. Weaire and N. Rivier, Soap, cells and statistics — Random patterns in two dimensions, Contemp. Phys. 25: 59 (1984).

    Article  ADS  Google Scholar 

  9. R. Occelli, “Transitions Ordre-Désordre dans les Structures Convectives Bidimensionelles,” Thèse, Université de Provence, Marseille (1985).

    Google Scholar 

  10. F. Rothen and A. J. Koch, Phyllotaxis, or the properties of spiral lattices. II. Packing of circles along logarithmic spirals, J. de Physique 50: 1603 (1989).

    Article  MathSciNet  Google Scholar 

  11. H. S. M. Coxeter, The role of intermediate convergents in Tait’s explanation for phyllotaxis, J. of Algebra 20: 167 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Rothen and A. J. Koch, Phyllotaxis, or the properties of spiral lattices. I. Shape invariance under compression, J. de Physique 50: 633 (1989).

    Article  MathSciNet  Google Scholar 

  13. A. B. Pippard, “The Physics of Vibration,” vol.11, pp. 391-413. (Cambridge Univ. Press, 1978, 1989)

    Google Scholar 

  14. D. Baums, W. Elsässer and E. O. Göbel, Farey tree and devil’s staircase of a modulated external-cavity semiconductor laser, Phys. Rev. Letters 63: 155 (1989).

    Article  ADS  Google Scholar 

  15. C. Mazrec and J. Kappraff, Properties of maximal spacing on a circle related to phyllotaxis and to the golden mean, J. Theor. Biol. 103: 201 (1983).

    Article  Google Scholar 

  16. J. Guerreiro, A. J. Koch and F. Rothen, in preparation. 16 N. Rivier, The structure and dynamics of patterns of Bénard convection cells, IUTAM Symp. on Fluid Mechanics of Stirring and Mixing, UCSD (1990), to appear.

    Google Scholar 

  17. L. S. Levitov, Phyllotaxis of flux lattices in layered superconductors, Landau Institute preprint (1990).

    Google Scholar 

  18. L. S. Levitov, Hamiltonian approach to phyllotaxis, Landau Inst. preprint (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rivier, N., Koch, A.J., Rothen, F. (1991). Crystallography of Composite Flowers: Mode Locking and Dynamical Maps. In: Peliti, L. (eds) Biologically Inspired Physics. NATO ASI Series, vol 263. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9483-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9483-0_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9485-4

  • Online ISBN: 978-1-4757-9483-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics