Skip to main content

Neuronal Plasticity in Development: Lessons from Ethanol Neurotoxicity during Embryogenesis

  • Chapter
Brain Plasticity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 429))

Abstract

Conceptually, it can be said that development of the embryonic central nervous system begins with a population of undifferentiated, multipotent cells and ends up with a highly organized arrangement of mature neurons each of which expresses a functional neurotransmitter phenotype. This ultimate, functional phenotype is a product of the interaction of numerous influences impinging on multipotential neuroblasts. Physical factors such as cell-cell contacts, migratory pathways and a plethora of soluble factors all profoundly influence establishment of neuronal phenotype during neuroembryogenesis. For example, definitive studies by LeDouarin and coworkers beginning in the early 1970’s (Le Douarin, 1973; 1980; Le Douarin and Teillet, 1974; Le Douarin et al, 1975; Le Douarin and Smith, 1988; Teillet and Le Douarin, 1983) demonstrated in vivo that neuronal phenotypes are neither rigidly predetermined nor static. They found that the migratory destination of autonomic neuroblasts of neural crest origin determines their ultimate neurotransmitter phenotype. Furthermore, they demonstrated that exposure of neural crest-derived presumptive adrenergic neuroblasts to cells from another germ cell layer, splanchnic mesoderm, results in a phenotypic shift to fully differentiatied cholinergie neurons (Le Douarin et al, 1975). Collectively, these studies have introduced the idea of neuronal plasticity in the developing brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbot NJ (ed) (1991) Glia-Newonal Interactions. Vol 633, Ann N.Y. Acad Sci, New York.

    Google Scholar 

  • Barami K, Kirschenbaum B, Lemmon V, Goldman SA (1994): N-cadherin and Ng-CMA18D9 are involved serially in the migration of newly generated neurons into the adult songbird brain. Neuron 13: 567–582.

    Article  PubMed  CAS  Google Scholar 

  • Brodie C, Vernadakis A (1992) Ethanol increases cholinergie and decreases GABAergic neuronal expression in cultures derived from 8-day-old chick embryo cerebral hemispheres: interaction of ethanol and growth factors. Devi Brain Res 65: 253–257.

    Article  CAS  Google Scholar 

  • Brodie C, Kentroti S, Vernadakis A (1991) Growth factors attenuate the cholinotoxic effects of during early neuroembryogenesis in the chick embryo. hit J Dei l Neurosci 9: 203–213.

    Article  CAS  Google Scholar 

  • Brodie C, Vernadakis A (1990) Critical periods to ethanol exposure during early neuroembryogenesis in the chick embryo: cholinergie neurons. Devi Brain Res 56: 223–228.

    Article  CAS  Google Scholar 

  • Cameron RS, Rakic P (1991) Glial cell lineage in the cerebral cortex: A review and synthesis. GL 4: 124–137.

    Article  CAS  Google Scholar 

  • Carnahan J, Nawa H (1995) Regulation of neuropeptide expression in the brain by neurotrophins. Mol Biol 10: 135–149.

    CAS  Google Scholar 

  • Chao CC, Hu S, Tsang M, Weatherbee J, Molitor TW, Anderson W R, Peterson K (1992) Effects of transforming growth factor-ß on murinc astrocyte glutamine synthetase activity: Implications in neuronal injury./ Clin Invest 90: 1786–1793.

    Article  CAS  Google Scholar 

  • Du X, lacovitti L (1995) Synergy between growth factors and transmitters required for catecholamine differentiation in brain neurons. J Neurosci 15: 5420–5427.

    PubMed  CAS  Google Scholar 

  • Eins E, Spoerri PE and Heyder E, (1983) GABA or sodium bromide induced plasticity of neurites of mouse neuroblastoma cells: A quantitative study. Cell Tiss Res 229: 457–460.

    CAS  Google Scholar 

  • Fauquet M, Smith J, Ziller C, LeDouarin NM (1981) Differentiation of autonimic neuron precursors in vitro: Cholinergie and adrenergic traits in culture neural crest cells. J Neurosci 1: 478–492.

    PubMed  CAS  Google Scholar 

  • Fedoroff S, Vernadakis A (1986) `Astrocytes“ Vol. 1–3. Academic Press, Orlando, Florida.

    Google Scholar 

  • Furukawa S, Furukawa Y, Satogoshi E, Hayashi K (1986) Synthesis and secretion of nerve growth factor by mouse astroglial cells in culture. Biochem Res Conlin 136: 57–63.

    Article  CAS  Google Scholar 

  • Gray EG, Sanes JR (1992) Lineage of radial glia in the chicken optic tectum. Development 114: 271–285.

    PubMed  CAS  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morph 88: 49–92.

    Article  Google Scholar 

  • Han VKM, Smith A, Myint W, Mygard K, Bradshaw S (1992) Mitogenic activity of epidermal growth factor on newborn rat astroglia: Interaction with insulin-like factors. Endocrttol 131: 1134–1142.

    Article  CAS  Google Scholar 

  • Hatten ME (1984) Embryonic cerebellar astroglia in vitro. Dev Brain Res 13: 309–313.

    Article  Google Scholar 

  • Hertz L, Schousboe A (1987) Primary cultures of GABAergic and glutamatergic neurons as model systems to study neurotransmitter functions. I. Differentiated cells. In: Model Sestents of Development and Aging of the Nervous System (Vernadakis A. Privat A, Lauder JM, Timiras PS, Giacobini E, Eds) Martinus Nijhoff, Boston, pp 19–31.

    Google Scholar 

  • Hirano M, Goldman JE (1988) Gliogenesis in rat spinal cord: Evidence for origin of astrocytes and oligodendrocytes from radial precursors. J Newosci Res 21: 155–167.

    Article  CAS  Google Scholar 

  • Houlgatte R, Mallat M, Brachet P, Prochiantz A (1989) Secretion of NGF in culture of glial cells and neurons derived from different regions of the mouse brain. J Neurosci Res 24: 143–152.

    Article  PubMed  CAS  Google Scholar 

  • Howard MJ, Bronner-Fraser M (1985) The influence of neural tube-derived factors on differentiation of neural crest cells in vitro. J Neerosci 5: 3302–3309.

    CAS  Google Scholar 

  • Huff RK, Schreier WC (1989) Fibroblast growth factor pretreatment reduces epidermal growth factor-induced proliferation in rat astrocytes. Life Sci 45: 1515–1520.

    Article  PubMed  CAS  Google Scholar 

  • Jonakait GM, Wei R, Sheng ZL, Hart RP, Ni L (1994) Interferon-y promotes cholinergie differentiation of embryonic septal nuclei and adjacent basal forebrain. Neuron 12: 1149–1159.

    Article  PubMed  CAS  Google Scholar 

  • Keningsbery RL, Mazzoni JE, Collier B, Cuello AC (1992) Epidermal growth factor affects both glia and cholinergic neurons in septal cell culture. Neurosci 50: 85–97.

    Article  Google Scholar 

  • Kentroti S, Vernadakis A (1997) Differential expression in glial cells derived from chick embryo cerebral hemispheres at an advanced stage of development. J Neurosci Res 47: 822–331.

    Article  Google Scholar 

  • Kentroti S, Vernadakis A (1996a) Immunocytochemical and biochemical characterization of glial phenotypes in normal and immortalized cultures derived from 3-day-old chick embryo encephalon. CL/A 18: 79–91.

    Google Scholar 

  • Kentroti S, Vernadakis A (1996b) Ethanol neurotoxicity in culture: Selective loss of cholinergic neurons…I Neurosci Res 44: 577–585.

    Article  CAS  Google Scholar 

  • Kentroti S, Vernadakis A (1995) Early neuroblasts are pluripotential: Colocalization of neurotransmitters and neuropeptides. J Neurosci Res 41: 696–707.

    Article  PubMed  CAS  Google Scholar 

  • Kentroti S, Grove J, Rahman H, Vernadakis A (1995) Ethanol neuronotoxicity in the embryonic chick brain in oro and in culture: Interaction of the neural cell adhesion molecule (NCAM). Hit.1 Devl Neurosci 13: 859–870.

    Article  CAS  Google Scholar 

  • Kentroti S, Vernadakis A (1992) Ethanol administration during early embryogenesis affects neuronal phenotypes at a time when neuroblasts are pluripotential. J Neurosci Res 33: 617–625.

    Article  PubMed  CAS  Google Scholar 

  • Kentroti S, Vernadakis A (1991a) Growth hormone-releasing hormone and somatostatin influence neuronal expression in the developing chick brain: Ill. GABAergic neurons. Bruin Res. 562: 34–38.

    Article  CAS  Google Scholar 

  • Kentroti S, Vernadakis A (1991b) Effects of early in ovo administration of ethanol on expression of the GABAergic neuronal phenotype in the chick embryo. Devi. Brain Res. 61: 290–292.

    Article  CAS  Google Scholar 

  • Kentroti S. Vernadakis A (1991c) Correlation between morphological and biochemical effects of ethanol on neuroblast-enriched cultures derived from 3-day-old chick embryos. J. Neurosci. Res. 30: 484–492.

    Google Scholar 

  • Kentroti S, Vernadakis A (1990a) Growth hormone-releasing hormone and somatostatin influence neuronal expression in the developing chick brain: II. Cholinergie neurons. Brain Res. 512: 297–303.

    Article  PubMed  CAS  Google Scholar 

  • Kentroti S. Vernadakis A (1990b) Neuronal plasticity in the developing chick brain: Interaction of ethanol and neuropeptides. Develop. Brain Re.s. 56: 205–210.

    Google Scholar 

  • Kentroti S. Vernadakis A (1989) Growth hormone-releasing hormone influences neuronal expression in the developing chick brain: I. Catecholaminergic neurons. Develop. Bruin Res. 49: 275–280.

    Google Scholar 

  • Kimelberg HK (1986) Catecholamine and serotonin uptake in astrocytes. In:. 4snoéetes Vol 2, ( Fedoroff S. Vernadakis A, Eds) Academic Press, Orlando, Florida. pp 107–131.

    Google Scholar 

  • Kirschenbaum B, Nedergaard M, Preuss A, Barami K, Fraser RAR, Goldman SA (1994) In vino neuronal production and differentiation by precursor cells derived from the adult human forebrain_ Cerebral Cortex 6: 576–589.

    Google Scholar 

  • Landis SC (1980) Developmental changes in the neurotransmitter properties of dissociated sympathetic neurons: a cytochemical study of the effect of medium. Devil Biol 77: 349–361.

    Article  CAS  Google Scholar 

  • Landis SC (1978) Growth cones of cultured sympathetic neurons contain adrenergic vesicles. J Cell Binl 78: 8–14. Landis SC, Keefe D (1983) Evidence for neurotransmitter plasticity in vivo: Developmental changes in properties of cholincrgic sympathetic neurons. Der Binl 98: 349–372.

    Google Scholar 

  • Landis SC, Siegel RE. Schwab M (1988) Evidence for neurotransmitter plasticity in vivo I1. Immunocytochemical studies of rat sweat gland innervation during development. Der Biol 126: 129–140.

    Google Scholar 

  • Le Douarin N (1980) Migration and differentiation of neural crest cells. In: Current Topics in Developmental Biology, Vol. /6 Academic Press, Oxford. pp31–86.

    Google Scholar 

  • Le Douarin N (1973) A biological cell labeling technique and its use in experimental embryology. Der Binl 30: 217–222.

    Google Scholar 

  • Le Douarin N, Smith J (1988) Development of the peripheral nervous system from the neural crest. Ann Rev Cc’!! Biol 4: 375–404.

    Article  Google Scholar 

  • Le Douarin N. Teillet M-AM (1974) Experimental analysis of the migration and differentiation of neuroblasts of the autonomic nervous system and of neurectodermal mesenchymal derivatives, using a biological cell marking technique. Dee Binl 41: 162–184.

    Google Scholar 

  • Le Douarin N, Renaud D, Teillet M-AM and Le Douarin GH (1975) Cholinergie differentiation of presumptive adrenergic neuroblasts in interspecific chimeras after heterotopic transplantation. Prom Natl Acad Sei, USA 72: 728 732.

    Google Scholar 

  • Lee K, Kentroti S, Vernadakis A (1992) Comparative biochemical, morphological and immunocytochemical studies between C6 glial cells of early and late passage and advanced passages of glial cells derived from aged mouse cerebral hemispheres. GLIA 6: 245–257.

    Article  PubMed  CAS  Google Scholar 

  • Levitt P, Rakic P (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J. Comp. Neural. 193–417: 448.

    Google Scholar 

  • Lindholm D, Harikka J, da Penha Berzaghi M, Castren E, Tzimagiorgis G, Highes RA, Thoenen H (1994) Fibroblast growth factor-5 (FGF-5) promotes differentiation of cultured rat septal cholinergic and raphe serotonergic neurons: comparison with the effects of neurotrophins. Eur J Neurosci 6: 244–252.

    Article  PubMed  CAS  Google Scholar 

  • Loret C, Sensenbrenner M, Labourdette G (1989) Differential phenotypic expression induced in cultured rat astroblasts by acidic fibroblast growth factor, epidermal growth factor and thrombin. J Biel Chem 264: 8319–8327.

    CAS  Google Scholar 

  • Maderspach K, Nemeth K (1993) Immunocytochemical visualization of K-opioid receptors on chick embryonic neurons differentiating in vitro. Neurosci 57: 459–465.

    Article  CAS  Google Scholar 

  • Massarelli R, Mykita S, Sorrentino G (1986) The supply of choline to glial cells. In Astrocyles Vol 2, ( Fedoroff S, Vernadakis A, Eds) Academic Press, Orlando, Florida, pp 155–178.

    Google Scholar 

  • McConnell SK (1991) The generation of neuronal diversity in the central nervous system. Annu Rev Neurosci 1991 14: 269–300.

    Article  Google Scholar 

  • McKay RDG (1989) The origins of cellular diversity in the mammalian central nervous system. Cell 58: 815–821. Misson J-P, Takahashi T, Caviness VS Jr (1991) Ontogeny of radial and other astroglial cells in marine cerebral cortex. Glia, 4: 138–148.

    Google Scholar 

  • Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, Morassutti D, Weiss S, van der Kooy D (1994) Neural stem cells in the adult mammalilan forebrain: A relatively quiescent subpopulation of subependymal cells. Neuron 13: 1071–1082.

    Article  PubMed  CAS  Google Scholar 

  • Muller CM (1992) A role for glial cells in activity-dependent central nervous plasticity? Review and hypothesis. Int Res Neurobiol 34: 215–221.

    Article  CAS  Google Scholar 

  • Olson JA, Shiverick KT, Ogilvie S, Buhl WC, Raizada MK (1991) Developmental expression of rat IGF binding protein-2 by astrocytic glial cells in culture. Endocrinol 129: 1066–1074.

    Article  CAS  Google Scholar 

  • Oppenheim RW (1991) Cell death during development of the nervous system. Anna Rev Neurosci, 1991 14: 453–501.

    Article  Google Scholar 

  • Patterson PH, Chun LLY (I 977a) The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons. Devl Biol 56: 263–280.

    Google Scholar 

  • Patterson PH, Chun LLY (1977b) The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons. Devl Biol 60: 473–481.

    Article  CAS  Google Scholar 

  • Perraud F, Labourdette G, Eclancher F, Sensenbrenner M (1990) Primary cultures of astrocytes from different brain areas of newborn rats and effects of basic fibroblast growth factor. Devl Neurosci 12: 11–21.

    Article  CAS  Google Scholar 

  • Perraud F, Besnard F, Pettman B, Sensenbrenner M, Labourdette G (1988) Effects of aFGF and bFGF on the proliferation and glutamine synthetase expression of rat astroblasts in culture. GLIA 1: 124–131.

    Article  PubMed  CAS  Google Scholar 

  • Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD (1993) Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262: 695–700.

    Article  PubMed  CAS  Google Scholar 

  • Rahman H, Kentroti S, Vernadakis A (1994a) The critical period for ethanol effects on cholinergie neuronal expression in neuroblast-enriched cultures derived from 3-day-old chick embryo: NGF ameliorates the cholinotoxic effects of ethanol. tnt J Devl Neurosci 12: 397–404.

    Article  CAS  Google Scholar 

  • Rahman H, Kentroti S, Vernadakis A (1994b) Neuroblast cell death in ovo and in culture: interaction of ethanol and neurotrophic factors. Neurochem Res 19: 1495–1502.

    Article  PubMed  CAS  Google Scholar 

  • Rahman H, Kentroti S, Vernadakis A (1993a) Early in ovo exposure of chick embryos to ethanol prevents the neuronotrophic effects of intracerebral NGF administration on cholinergie phenotypic expression. Deli Brain Res 76: 256–259.

    Article  CAS  Google Scholar 

  • Rahman H, Lee K, Kentroti S, Vernadakis A (1993b) Ethanol exerts differential effects on high affinity choline uptake in neuron-enriched cultures from 8-day-old chick embryo cerebral hemispheres. Neurochem Res 18: 551–557.

    Article  PubMed  CAS  Google Scholar 

  • Rakic PC (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex: a Golgi and electron microscopic study in Macacus rhesus. J Comp Neural 141: 283–312.

    Article  CAS  Google Scholar 

  • Ransom BR, Carlini WG (1986) Electrophysiological properties of astrocytes. In: Astrocrte.s. Vol 2, Academic Press, Orlando, Florida. pp I -47.

    Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255: 1707–1710.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds BA, Weiss S (1993) EGF-responsive stem cells in the mammalian central nervous system. In: ( A.C. Cuello, Ed) Restorative Neurology and Neuroscience, Y’ol. 6, Neuronal Cell Death and Repair, Elsevier, Amsterdam. pp. 247–255.

    Google Scholar 

  • Rudge JS, Alderson RI’, Pasnikowski E, McClain J, TP NY. Lindsay RM (1992) ExpressionofCNTF and neurotrophins-NGF, BDNF and NT3 in cultured rat hippocampal astrocytes. Eon./ Neurosci 4: 459–471.

    Google Scholar 

  • Rutishauser U (1983) Molecular and biological properties of a neural cell adhesion molecule. Cold Spring Harbor Syrup Quant Biol 48: 501–514.

    Article  CAS  Google Scholar 

  • Sanes JR (1989) Analysing cell lineage with a recombinant retrovirus. Trends Neurosci 12: 21–28.

    Article  PubMed  CAS  Google Scholar 

  • Schwab ME (1996) Structural plasticity of the adult CNS. Negative control by neurite growth inhibitory signals. 101J Dev Neurosci 14: 379–385.

    Article  CAS  Google Scholar 

  • Selmaj K, Shafit-Zagardo B, Aquino DA, Farooq M, Raine CS, Norton WT, Brossan CF (1991) Tumor necrosis factor-induced proliferation of astrocytes from mature brain is associated with down-regulation of GFAP mRN A. J Neurochem 57: 823–830.

    Article  PubMed  CAS  Google Scholar 

  • Sieber-Blum M, Kahn CR (1982) Suppression of catecholamine and melanin synthesis and promotion of cholinergic differentiation of quail neural crest cells by heart cell conditioned medium. Stem Cells 2: 344–353.

    PubMed  CAS  Google Scholar 

  • Spoerri PE, Srivastava N. Vernadakis A (1996) Role of GABA, receptors in the GABA attenuation of ethanol neurotoxicity. J Neurosci Res 44: 499–506.

    Google Scholar 

  • Spoerri PE, Srivastava N. Vernadakis A (1995a) GABA attenuates the neurotoxic effects of ethanol in neuron-enriched cultures derived from 8-day-old chick embryo cerebral hemispheres. Dev Brain Res 86: 94–100.

    Google Scholar 

  • Spoerri PE, Srivastava N, Vernadakis A (1995b) Ethanol neurotoxicity on neuroblast-enriched cultures from 3- day-old chick embryo is attenuated by the neuronotrophic action of GABA. lot.1 Devl Neurosci 13: 539–544.

    Article  CAS  Google Scholar 

  • Spoerri PE (1988) Neurotrophic effects of GABA in cultures of embryonic chick brain and retina. Synapse 2: 11–22.

    Article  PubMed  CAS  Google Scholar 

  • Spoerri PE and Wolff JR (1981) Effect of GABA-administration on murine neuroblastoma cells in culture. I. Increased membrane dynamics and formation of specialized contacts. Cell Tiss Res 218: 567–579.

    CAS  Google Scholar 

  • Teillet M-A, Le Douarin NM (1983) Consequences of neural tube and notochord excision on the development of the peripheral nervous system in the chick embryo. Dev Biol 98: 192–211.

    Article  PubMed  CAS  Google Scholar 

  • Varon S (1975) Neurons and glia in neural cultures. Exp Neurol 48: 93–134.

    Article  PubMed  CAS  Google Scholar 

  • Vernadakis A (1996) Glia-neuron intercommunications and synaptic plasticity. Prog Neurobiology 49: 185–214.

    Article  CAS  Google Scholar 

  • Vernadakis A (1988) N euron-gl ia interrelations. Mt Rev Neu’obiol30: 149 224.

    Google Scholar 

  • Vernadakis A (1987) Neuron-glia interrelations. In: ( J.R. Smythies and R.J. Bradley, Eds) international Review of Neurobiology. kid 30. Academic Press, New York, NY. pp 149–224.

    Google Scholar 

  • Vernadakis A (1974) Uptake and storage of 3H-norepinephrine in the cerebral hemispheres and cerebellum of chicks during embryonic development and early posthatching. In: Drugs and the Developing Brain. ( Vernadakis A, Weiner N. Eds) Plenum Publishing, New York, pp 138–148.

    Chapter  Google Scholar 

  • Vernadakis A, Kentroti S (1996) Glia models to study glial cell cytotoxicity. In: (J.R. Perez-Polo, Ed.) Methods in Neurosciences, Vol 30. “Paradigms of Neural Injury” Academic Press, New York, NY, pp 55–80.

    Google Scholar 

  • Vernadakis A, Kentroti S(1990) Opioids influence neurotransmitter phenotypic expression in chick embryonic neuronal cultures. J Neurosci Res 26: 342–348.

    Google Scholar 

  • Voigt T (1989) Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J Comp Neural 289: 74–88.

    Article  CAS  Google Scholar 

  • Voigt T, de Lima AD (1985) The role and fate of radial glial cells during development of the mammalian cortex. In: Neuron-Glia interrelations During Phylogenv. A. Vernadakis and B.I. Roots, eds. Humana Press. New Jersey, pp. 59–78.

    Google Scholar 

  • Walz W, Hertz L (1984) Sodium transport in astrocytes. J Neurosci Res 11: 231–239.

    Article  PubMed  CAS  Google Scholar 

  • White S, Woodbury DM (1987) Electrophysiological and ionic transport properties of glial cells in culture. In: Model Systems of Development and Aging of the Nervous System (Vernadakis A, Privat A, Lauder,IM, Timiras PS, Giacobini E, Eds) Martinus Nijhoff, Boston, pp 171–191.

    Google Scholar 

  • Yamakumi T, Ozawa F, Hashimoto F, Kuwano R, Takahashi Y, Amano T (1987) Expression of I3NGF mRNA in rat glioma cells and astrocytes from rat brain. FEBS Lett 223: 117–121.

    Article  Google Scholar 

  • Yoshida K, Gage FH (1991) FGF stimulates NGF synthesis and secretion by astrocytes. Brain Res 538: 118–126.

    Article  PubMed  CAS  Google Scholar 

  • Ziller C (1987) Emergence of neuronal phenotypes in neural crest derived cells: and in vitro study. In: Model Systems in Neurotocicologv: Alternative Approaches to Animal Testing. Alan R. Liss, Inc. New York. NY. pp 59–68.

    Google Scholar 

  • Ziller C. Smith J (1982) Migration and differentiation of neural crest cells and their derivatives: in vivo and in vitro studies on the early development of the avian peripheral nervous system. Reprod Nutr Develop 22(1B): 1 53–162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kentroti, S. (1997). Neuronal Plasticity in Development: Lessons from Ethanol Neurotoxicity during Embryogenesis. In: Filogamo, G., Vernadakis, A., Gremo, F., Privat, A.M., Timiras, P.S. (eds) Brain Plasticity. Advances in Experimental Medicine and Biology, vol 429. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9551-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9551-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9553-0

  • Online ISBN: 978-1-4757-9551-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics