Skip to main content

Abstract

The electrostatic potential at a point \(\vec r\) in the vicinity of an atom or molecule is (in a.u.):

$$v^{ES} \left( {\vec r} \right) = \sum\limits_A {\frac{{Z_A }} {{\left| {\vec r - \vec R_A } \right|}}} - \int {\frac{{\rho \left( {\vec r} \right)}} {{\left| {\vec r - \vec r'} \right|}}} d\vec r'$$
(1)

where ZA is the charge on nucleus A, located at \({\vec R_A}\) A, and ρ(\(\overrightarrow {r'}\) ) is the electronic charge density. As is clear from equation (1), the electrostatic potential represents the net electric potential field at point \(\vec r\) caused by the unperturbed, i.e., static, charge distribution of an atom or molecule. As such the electrostatic potential determines the classical coulombic component of the interaction energy of a static target with anything. In this chapter a few relationships and differences between various kinds of uses of the electrostatic potential are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136:B864 (1964). See also R. G. Parr, R. A. Donnelly, M. Levy and W. E. Palke, Electronegativity: the density functional viewpoint, J. Chem. Phys. 68: 3801 (1978).

    Google Scholar 

  2. See, e.g.,P. Gombas, “Die Statistische Theorie des Atoms und ihre Anwendungen,” Springer, Vienna (1949); P. Gombas, Statische Behandlung des Atoms, in: “Handbuch der Physik,” S. Flügge, ed., Springer-Verlag, Berlin (1956), Vol. 36, p. 109; N. H. March, The Thomas-Fermi approximation in quantum mechanics, Advan. Phys. 6:1 (1957); E. H. Lieb and B. Simon, The Thomas-Fermi theory of atoms, molecules, and solids, Advan. Math. 23:22 (1977).

    Google Scholar 

  3. P. A. M. Dirac, Note on exchange phenomena in the Thomas-atom, Proc. Cambridge Phil. Soc. 26: 376 (1930).

    CAS  Google Scholar 

  4. R. G. Gordon and Y. S. Kim, Theory for the forces between closed-shell atoms and molecules, J. Chem. Phys. 56: 3122 (1972).

    Article  CAS  Google Scholar 

  5. For a review see M. J. Clugston, The calculation of inter- molecular forces. A critical examination of the Gordon-Kim method, Advan. Phys. 27:893 (1978).

    Google Scholar 

  6. E. Scrocco and J. Tomasi, The electrostatic molecular potential as a tool for the interpretation of molecular properties, Top. Curr. Chem. 42:95 (1973); E. Scrocco and J. Tomasi, Electronic molecular structure, reactivity, and intermolecular forces: an heuristic interpretation by means of electrostatic molecular potentials, Advan. Quantum Chem. 11:116 (1978); J. Tomasi, On the use of electrostatic molecular potentials in theoretical investigations on chemical reactivity, in: “Quantum Theory of Chemical Reactions,” R. Daudel, A. Pullman, L. Salem and A. Veillard, eds., D. Reidel Publishing Co., Dordrecht, Reidel Publishing Co., (1979), Vol. I, p. 191.

    Google Scholar 

  7. P. Politzer and K. C. Daiker, Models for chemical reactivity, in: “The Force Constant in Chemistry,” D. M. Deb, ed., VanNostrand-Reinhold, Princeton, NJ (1980), in press.

    Google Scholar 

  8. K. Morokuma, Molecular orbital studies of hydrogen bonds. III. C=0•••H-0 hydrogen bond in H2C0•••H20 and H2C0•••2H20, J. Chem. Phys. 55:1236 (1971); K. Kitaura and M. Morokuma, A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation, Int. J. Quantum Chem. 10: 325 (1976).

    Google Scholar 

  9. See, e.g., A. Messiah, “Quantum Mechanics,” North-Holland, Amsterdam (1963), Vol. II, pp. 781–793; or P. R. Bunker, “Molecular Symmetry and Spectroscopy,” Academic, New York (1979), pp. 166–168.

    Google Scholar 

  10. M. Fink and C. Schmiedekamp, Precise determination of differential electron scattering cross sections. III. Exchange corrections (CH4, N2, CO2, and Kr), J. Chem. Phys. 71: 5243 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Truhlar, D.G. (1981). Some Relationships between Different Uses of the Electrostatic Potential. In: Politzer, P., Truhlar, D.G. (eds) Chemical Applications of Atomic and Molecular Electrostatic Potentials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9634-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9634-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9636-0

  • Online ISBN: 978-1-4757-9634-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics