Skip to main content

Methods for Measuring Chloride Transport across Nerve, Muscle, and Glial Cells

  • Chapter
Chloride Channels and Carriers in Nerve, Muscle, and Glial Cells

Abstract

Intracellular Cl together with HCO 3 is the most abundant free anion in living cells. Measuring intracellular chloride activity (a iCl ) and studying the mechanisms involved in regulation of intracellular Cl is particularly important in excitable cells for four main reasons: (1) a iCl is a quantity needed to determine E Cl, the Cl equilibrium potential. (2) Several transport mechanisms responsible for intracellular pH regulation are tightly coupled to Cl. (3) Cl is also involved in transport mechanisms implicated in cell volume regulation. (4) Knowledge of intracellular Cl homeostasis is crucial for understanding synaptic inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acker, H., Pietruschka, F., and Zierold, K., 1985, Comparative measurements of potassium and chloride with ion-sensitive microelectrodes and x-ray microanalysis in cultured skeletal muscle fibers, In Vitro Cell Dev. Biol. 21: 45–48.

    Article  PubMed  CAS  Google Scholar 

  • Aickin, C. C., and Brading, A. F., 1982, Measurement of intracellular chloride in guinea-pig vas deferens by ion analysis, 36 chloride efflux and microelectrodes, J. Physiol. (London) 326: 139–154.

    CAS  Google Scholar 

  • Aickin, C. C., and Brading, A. F., 1984, The role of chloride bicarbonate exchange in the regulation of intracellular chloride in guinea-pig vas deferens, J. Physiol. (London) 349: 587–606.

    CAS  Google Scholar 

  • Aickin, C. C., and Brading, A. F., 1985a, The effects of bicarbonate and foreign anions on chloride transport in smooth muscle of the guinea-pig vas deferens, J. Physiol. (London) 366: 267–280.

    CAS  Google Scholar 

  • Aickin, C. C., and Brading, A. F., 1985b, Advances in the understanding of transmembrane ionic gradients and permeabilities in smooth muscle obtained by using ion-selective micro-electrodes, Experientia 41: 879–887.

    Article  PubMed  CAS  Google Scholar 

  • Aickin, C. C., Betz, W. J., and Harris, G. L., 1989. Intracellular chloride and the mechanism for its accumulation in rat lumbrical muscle, J. Physiol. (London) 411: 437–455.

    CAS  Google Scholar 

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D., 1989, Molecular Biology of the Cell, 2nd ed., Garland, New York.

    Google Scholar 

  • Allakhverdov, B. L., Burovina, I. V., Chmykhova, N. M., and Shapovalov, A. I., 1980, Electron probe x-ray microanalysis of intracellular sodium, potassium and chlorine contents in amphibian motoneurones, Neuroscience 5: 2023–2031.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Leefmans, F. J., Rink, T. J., and Tsien, R. Y., 1981, Free calcium ions in neurones of Helix asperse measured with ion-selective micro-electrodes, J. Physiol. (London) 315: 531–548.

    CAS  Google Scholar 

  • Alvarez-Leefmans, F. J., Gamino, S. M., Giraldez, F., and Gonzalez-Serratos, H., 1986, Intracellular free magnesium in frog skeletal muscle fibres measured with ion-selective micro-electrodes, J. Physiol. (London) 378: 461–483.

    CAS  Google Scholar 

  • Alvarez-Leefmans, F. J., Giraldez, F., and Camino, S. M., 1987, Intracellular free magnesium in excitable cells: Its measurement and its biological significance, Can. J. Physiol. Pharmacol. 65: 915–925.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Leefmans, F. J., Gamino, S. M., Giraldez, F., and Nogueron, L, 1988, Intracellular chloride regulation in amphibian dorsal root ganglion neurones studies with ion-selective micro-electrodes, J. Physiol. (London) 406: 225–246.

    CAS  Google Scholar 

  • Ammann, D., 1986, ion-Selective Microelectrodes, Springer-Verlag, Berlin.

    Google Scholar 

  • Ammann, D., Huser, M., Kräutler, B., Rusterholz, B., Schulthess, P., Lindemann, B., Haider, E., and Simon, W., 1986, Anion selectivity of metalloporphyrins in membranes, Heiv. Chim. Acta 69: 849–854.

    Article  CAS  Google Scholar 

  • Ammann, D., Oesch, V., Bührer, T., and Simon, W., 1987, Design of ionophores for ion-selective micro-sensors, Can. J. Physiol. Pharmacol. 65: 879–884.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, W. M., and Garcia-Diaz, J. F., 1980, Ion-selectivity microelectrodes: Theory and technique, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 2851–2859.

    CAS  Google Scholar 

  • Armstrong, W. M., Wojtkowski, W., and Bixennan, W. R., 1977, A new solid-state microelectrode for measuring intracellular chloride activities, Biot-him. Biophys. Acta 465: 165–170.

    Article  CAS  Google Scholar 

  • Ascher, P., Kunze, D. L., and Neild, J. O., 1976, Chloride distribution in Aplysia neurones, J. Physiol. (London) 256: 441–464.

    CAS  Google Scholar 

  • Ballanyi, K., and Grafe, P., 1985, An intracellular analysis of -y-aminobutyric-acid-associated ion movements in rat sympathetic neurones, J. Physiol. (London) 365: 41–58.

    CAS  Google Scholar 

  • Ballanyi, K., Grafe, P., and Ten Bruggencate, G., 1987, Ion activities and potassium uptake mechanisms of glial cells in guinea-pig olfactory cortex slices, J. Physiol. (London) 382: 159–174.

    CAS  Google Scholar 

  • Bates, R. G., 1973, Determination of pH: Theory and Practice, 2nd ed., Wiley, New York.

    Google Scholar 

  • Baumgarten. C. M., 1981, An improved liquid ion exchanger for chloride ion-selective microelectrodes, Am. J. Physiol. 241: C258 - C263.

    PubMed  Google Scholar 

  • Baumgarten, C. M., and Fozzard, H. A., 1981, Intracellular chloride activity in mammalian ventricular muscle, Am. J. Physiol. 241: C121 - C129.

    PubMed  CAS  Google Scholar 

  • Bockris, J. O., and Reddy, A. K. N., 1973, Modern Electrochemistry, Volume I, Plenum/Rosetta Edition, Plenum Press, New York.

    Book  Google Scholar 

  • Bolton, T. B., and Vaughan-Jones, R. D., 1977, Continuous direct measurement of intracellular chloride and pH in frog skeletal muscle, J. Physiol. (London) 270: 801–833.

    CAS  Google Scholar 

  • Bomsztyk, K., Calalb, M. B., Smith, L., and Stanton, T. H., 1988, A microelectrometric titration method for measurement of total intracellular Cl- concentration, Am. J. Physiol. 254: C200 - C205.

    PubMed  CAS  Google Scholar 

  • Boron, W. F., 1985, Intracellular pH-regulating mechanism of the squid axon. Relation between the external Na+ and HCO3 dependences, J. Gen. Physiol. 85: 325–345.

    Article  PubMed  CAS  Google Scholar 

  • Brown, A. M., and Kunze, D. L., 1974, Ion activities in identifiable Aplysia neurons, in: /on-Selective Microelectrodes ( H. J. Berman and N. C. Herbert, eds.), Plenum Press, New York, pp. 57–73.

    Chapter  Google Scholar 

  • Brown, A. M., Walker, J. L., Jr., and Sutton, R. B., 1970, Increased chloride conductance as the proximate cause of hydrogen ion effects in Aplysia neurons, J. Gen. Physiol. 56: 559–582.

    Article  PubMed  CAS  Google Scholar 

  • Brown, H. M., 1976, Intracellular Nat, K+ and CI— activities in Balanus photoreceptors, J. Gen. Physiol. 68: 281–290.

    Article  PubMed  CAS  Google Scholar 

  • Buck, R. P., 1975, Electroanalytical chemistry of membranes, Crit. Rev. Anal. Chem. 5: 323–419.

    Article  CAS  Google Scholar 

  • Bührle, C. P., and Sonnhof, U., 1983, Intracellular ion activities and equilibrium potentials in motoneurones and glial cells of the frog spinal cord, Pfluegers Arch. 396: 144–153.

    Article  Google Scholar 

  • Bührle, C. P., and Sonnhof, U., 1985, The ionic mechanism of postsynaptic inhibition in motoneurones of the frog spinal cord, Neuroscience 14: 581–592.

    Article  PubMed  Google Scholar 

  • Caldwell, P. C., 1954, An investigation of the intracellular pH of crab muscle fibres by means of micro-glass and micro-tungsten electrodes, J. Physiol. (London) 126: 169–180.

    CAS  Google Scholar 

  • Caldwell, P. C., 1958, Studies on the internal pH of large muscle and nerve fibres, J. Physiol. (London) 142: 22–62.

    CAS  Google Scholar 

  • Carr, C. W., 1968, Applications of membrane electrodes, Ann. N.Y. Acad. Sci. 148: 180–190.

    Article  PubMed  CAS  Google Scholar 

  • Cassola, A. C., Mollenhauer, M., and Frömter, E., 1983, The intracellular chloride activity of rat kidney proximal tubular cells, Pfluegers Arch. 399: 259–265.

    Article  CAS  Google Scholar 

  • Casteels, R., and Kuriyama, H., 1965, Membrane potential and ionic content in pregnant and non-pregnant rat myometrium, J. Physiol. (London) 177: 263–287.

    CAS  Google Scholar 

  • Chao, A. C., and Armstrong, W. M., 1987, Cl--selective microelectrodes: Sensitivity to anionic Cl- transport inhibitors, Am. J. Physiol. 253: C343 - C347.

    PubMed  CAS  Google Scholar 

  • Chao, A. C., Dix, J. A., Sellers, M. C., and Verkman, A. S., I989a, Fluorescence measurement of chloride transport in monolayer cultured cells: mechanisms of chloride transport in fibroblasts, Biophys. J. (in the press).

    Google Scholar 

  • Chao, A. C., Widdicombe, J. H., and Verkman, A. S., 1989b, Chloride conductive and cotransport mechanisms in cultures of canine tracheal epithelial cells measured by an entrapped fluorescent indicator, J. Membrane Biol. (in the press).

    Google Scholar 

  • Chen, P.-Y., and Verkman, A. S., 1988, Sodium-dependent chloride transport in basolateral membrane vesicles isolated from rabbit proximal tubules, Biochemistry 27: 655–660.

    Article  PubMed  CAS  Google Scholar 

  • Chen, P.-Y., Illsley, N. P., and Verkman, A. S., 1988, Renal brush-border chloride transport mechanisms characterized using a fluorescent indicator, Am. J. Physiol. 254: F114 - F120.

    PubMed  CAS  Google Scholar 

  • Christensen, H. N., 1982, Efflux used as a fad word? Trends Biosci. 7: 134.

    Article  Google Scholar 

  • Clegg, J. S., 1982, Alternative views on the role of water in cell function, in: Biophysics of Water ( F. Franks and S. F. Mathias, eds.), Wiley, New York, pp. 365–383.

    Google Scholar 

  • Clegg, J. S., 1984, Properties and metabolism of the aqueous cytoplasm and its boundaries, Am. J. Physiol. 246:R133–R15 l.

    Google Scholar 

  • Coombs, J. S., Eccles, J. C., and Fatt, P., 1955, The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential, J. Physiol. (London) 130: 326–373.

    CAS  Google Scholar 

  • Cornwall, M. C., Peterson, D. F., Kunze, D. L., Walker, J. L., Jr., and Brown, A. M., 1970, Intracellular potassium and chloride activities measured with liquid ion exchanger microelectrodes, Brain Res. 23: 433–436.

    Article  PubMed  CAS  Google Scholar 

  • Cotlove, E., Trantham, H. U., and Bowman, R. L., 1958, An instrument and method for automatic, rapid, accurate and sensitive titration of chloride in biological samples, J. Lab. Clin. Med. 51: 46 1468.

    Google Scholar 

  • Cotton, C. U., Weinstein, A. M., and Reuss, L., 1989, Osmotic water permeability of Necturus gallbladder epithelium, J. Gen. Physiol. 93: 649–679.

    Article  PubMed  CAS  Google Scholar 

  • Cremaschi, D., Meyer, G., Botta, G., and Rossetti, C., 1987, The nature of the neutral Na+ -Cl- -coupled entry at the apical membrane of rabbit gallbladder epithelium: II. Na+ -Cl--symport is independent of K+, J. Membr. Biol. 95: 219–228.

    Article  PubMed  CAS  Google Scholar 

  • Deisz, R. A., and Lux, H. D., 1982, The role of intracellular chloride in hyperpolarizing post-synaptic inhibition of crayfish stretch receptor neurones, J. Physiol. (London) 326: 123–138.

    CAS  Google Scholar 

  • Derbyshire, W., 1982, Dynamics of water in cellular systems, in: Biophysics of Water ( F. Franks and S. F. Mathias, eds.), Wiley, New York, pp. 249–253.

    Google Scholar 

  • Dick, D. A. T., 1979, Structure and properties of water in the cell, in: Mechanisms of Osmoregulation in Animals ( R. Gilles, ed.), Wiley, New York, pp. 3–45.

    Google Scholar 

  • Donahue, B. S., and Abercrombie, R. T., 1987, Free diffusion coefficient of ionic calcium in cytoplasm, Cell Calcium 8: 437–448.

    Article  PubMed  CAS  Google Scholar 

  • Edzes, H. T., and Berendsen, H. J. C., 1975, The physical state of diffusible ions in cells, Annu. Rev. Biophys. Bioeng. 68: 159–178.

    Google Scholar 

  • Eisenman, G., 1967, Glass Electrodes for Hydrogen and Other Cations: Principles and Practice, Dekker, New York.

    Google Scholar 

  • Eisenman, G., 1968, Similarities and differences between liquid and solid ion exchangers and their usefulness as ion specific electrodes, Anal. Chem. 40: 310–320.

    Article  CAS  Google Scholar 

  • Eisenman, G., 1969, Theory of membrane electrode potentials: An examination of the parameters determining the selectivity of solid and liquid ion exchangers and of neutral ion-sequestering molecules, in: Ion-Selective Electrodes (R. A. Durst, ed.), National Bureau of Standards Special Publication 314, pp. 156.

    Google Scholar 

  • Fromm, M., and Schultz, S. G., 1981, Some properties of KCI-filled microelectrodes: Correlation of potassium “leakage” with tip resistance, J. Membr. Biol. 62: 239–244.

    Article  PubMed  CAS  Google Scholar 

  • Frömter, E., Simon, M., and Gebler, B., 1981, A double-channel ion-selective microelectrode with the possibility of fluid ejection for localization of the electrode tip in the tissue, in: Progress in Enzyme and Ion-Selective Electrodes ( D. W. Ltibbers, H. Acker, R. P. Buck, G. Eisenman, M. Kessler, and W. Simon, eds.), Springer-Verlag, Berlin, pp. 35–44.

    Chapter  Google Scholar 

  • Fulton, A. B., 1982, How crowded is the cytoplasm? Cell 30: 345–347.

    Article  PubMed  CAS  Google Scholar 

  • Galvan, M., Dörge, A., Beck, F., and Rick, R., 1984, Intracellular electrolyte concentrations in rat sympathetic neurones measured with an electron microprobe, Pfluegers Arch. 400: 274–279.

    Article  CAS  Google Scholar 

  • Gardner, D. R., and Moreton, R. B., 1985, Intracellular chloride in molluscan neurons, Comp. Biochem. Physiol. 80A: 461–467.

    Article  Google Scholar 

  • Gayton, D. C., and Hinke, J. A. M., 1968, The location of chloride in single striated muscle fibers of the giant barnacle, Can. J. Physiol. Pharmacol. 46: 213–219.

    Article  PubMed  CAS  Google Scholar 

  • Gesteland, R. C., Howland, B., Lettvin, J. Y., and Pitts, W. H., 1959, Comments on microelectrodes, Proc. Inst. Radio Electron. Eng. Aust. 47: 1856–1861.

    Google Scholar 

  • Gilles, R., Bolis, L., and Kleinzeller, A., eds., 1987, Cell Volume Control: Fundamental and Comparative Aspects in Animal Cells, Curr. Top. Membr. Transp. 30.

    Google Scholar 

  • Giraldez, F., 1984, Active sodium transport and fluid secretion in the gallbladder epithelium of Necturus, J. Physiol. (London) 348: 431–455.

    CAS  Google Scholar 

  • Greger, R., and Schlatter, E., 1984, Mechanism of NaCI secretion in the rectal gland of spiny dogfish (Squalus acanthias), Pfluegers Arch. 402: 63–75.

    Article  CAS  Google Scholar 

  • Greger, R., Oberleithner, H., Schlatter, E., Cassola, A. C., and Weidtke, C., 1983, Chloride activity in cells of isolated perfused cortical thick ascending limbs of rabbit kidney, Pfluegers Arch. 399: 29–34.

    Article  CAS  Google Scholar 

  • Grinstein, S., McCulloch, L., and Rothstein, A., 1979, Transmembrane effects of irreversible inhibitors of anion transport in red blood cells: Evidence for mobile transport sites, J. Gen. Physiol. 73: 493–514.

    Article  PubMed  CAS  Google Scholar 

  • Guibault, G. C., Durst, R. A. Frant, M. S., Freiser, H., Hansen, E. H., Light, T. S., Pungor, E., Rechnitz, G., Rice, N. M., Rohm, T. J., Simon, W., and Thomas, J. D. R., 1976, Recommendations for nomenclature of ion-selective electrodes, Pure Appl. Chem. 48: 127–132.

    Google Scholar 

  • Harris, G. L., and Betz, W. J., 1987, Evidence for active chloride accumulation in normal and denervated rat lumbrical muscle, J. Gen. Physiol. 90: 127–144.

    Article  PubMed  CAS  Google Scholar 

  • Heinz, E., and Grassi, S., 1981, Interference of furosemide and other anion transport inhibitors with liquid Cl--exchanger electrodes, Biophys. J. 33: 222a.

    Google Scholar 

  • Hinke, J. A. M., 1969, Glass microelectrodes in the study of binding and compartmentalization of intracellular ions, in: Glass Microelectrodes ( M. Lavallee, O. F. Schanne, and N. C. Hebert, eds.), Wiley, New York, pp. 349–375.

    Google Scholar 

  • Hinke, J. A. M., 1987, Thirty years of ion-selective microelectrodes: Disappointments and successes, Can. J. Physiol. Pharmacol. 65: 873–878.

    Article  PubMed  CAS  Google Scholar 

  • Hinke, J. A. M., and Gayton, D. C., 1971, Transmembrane K+ and Cl- activity gradients for the muscle fibre of the giant barnacle, Can. J. Physiol. Pharmacol. 49: 312–322.

    Article  PubMed  CAS  Google Scholar 

  • Hironaka, T., and Morimoto, S., 1979, The resting membrane potential of frog sartorius muscle, J. Physiol. (London) 297: 1–8.

    CAS  Google Scholar 

  • Hoffmann, E. K., 1987, Volume regulation in cultured cells, Curr. Top. Membr. Transp. 30: 125–180.

    Article  Google Scholar 

  • Hoffmann, E. K., and Simonsen, L. O., 1989, Membrane mechanisms in volume and pH regulation in vertebrate cells, Physiol. Rev. 69: 315–382.

    PubMed  CAS  Google Scholar 

  • Hoffmann, E. K., SchiOdt, M., and Dunham, P., 1986, The number of chloride—cation cotransport sites on Ehrlich ascites cells measured with [3H]bumetanide, Am. J. Physiol. 250: C688 - C693.

    PubMed  CAS  Google Scholar 

  • Hofmeister, F., 1888, Zur lehre von der wirkung der salze. Zweite mitteilung, Arch. Exp. Pathol. Pharmakol. 24: 247–260.

    Article  Google Scholar 

  • Illsley, N. P., and Verkman, A. S., 1987, Membrane chloride transport measured using a chloride-sensitive fluorescent probe, Biochemistry 26: 1215–1219.

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi, K., Sasaki, S., and Yoshiyama, N., 1988, Intracellular chloride activity of arbbit proximal straight tubule perfused in vitro, Am. J. Physiol. 255: F49 - F56.

    PubMed  CAS  Google Scholar 

  • IUPAC, 1979, Commission on analytical nomenclature (prepared for publication by G. G. Guibault). Recommendations for publishing manuscripts on ion-selective electrodes, Ion-selective Electrode Rev. 1, 139.

    Google Scholar 

  • Jack, J. J. B., Noble, D., and Tsien, R. W., 1975, Electric Current Flow in Excitable Cells. Oxford University Press ( Clarendon ), London.

    Google Scholar 

  • Janz, G. J., and Ives, D. J. G., 1968, Silver, silver chloride electrodes, Ann. N.Y. Acad. Sci. 148: 210–221.

    Article  CAS  Google Scholar 

  • Kehoe, J., 1972, Ionic mechanisms of a two component cholinergie inhibition in Aplysia neurones, J. Physiol. (London) 225: 85–114.

    CAS  Google Scholar 

  • Kenyon, J., and Gibbons, W. R., 1977, Effects of low chloride solutions on action potentials of sheep cardiac Purkinje fibres, J. Gen. Physiol. 70: 635–660.

    Article  PubMed  CAS  Google Scholar 

  • Kerkut, G. A., and Meech, R. W., 1966, The internal chloride concentration of H and D cells in the snail brain, Comp. Biochem. Physiol. 19: 819–832.

    Article  CAS  Google Scholar 

  • Kettenmann, H., 1987, K+ and Cl- uptake by cultured oligodendrocytes, Can. J. Physiol. Pharmacol. 65: 1033–1037.

    Article  PubMed  CAS  Google Scholar 

  • Keynes, R. D., 1963, Chloride in the squid giant axon, J. Physiol. (London) 169: 690–705.

    CAS  Google Scholar 

  • Khuri, R. N., Bogharian, K. K., and Agulian, S. K., 1974, Intracellular bicarbonate in single skeletal muscle fibers, Pfluegers Arch. 349: 285–299.

    Article  CAS  Google Scholar 

  • Khuri, R. N., Agulian, S. K., and Bogharian, K. K., 1976, Intracellular bicarbonate of skeletal muscle under different metabolic states, Am. J. Physiol. 230: 228–232.

    PubMed  CAS  Google Scholar 

  • Kondo, Y., Bührer, T., Seiler, K., Frömter, E. and Simon, W., 1989, A new double-barrelled, ionophorebased microelectrode for chloride ions, Pfluegers Arch. 414: 663–668.

    Article  CAS  Google Scholar 

  • Koryta, J., 1975, Ion-Selective Electrodes, Cambridge University Press, London.

    Google Scholar 

  • Koryta, J., 1981, Theory of ion-selective electrodes, in: Ion-Selective Microelectrodes and Their Use in Excitable Tissues ( E. Sykova, P. Hnik, and L. Vyklicky, eds.), Plenum Press, New York, pp. 3–11.

    Chapter  Google Scholar 

  • Koryta, J., and Stun, K., 1983, lon-Selective Electrodes, 2nd ed., Cambridge University Press, London.

    Book  Google Scholar 

  • Kraig, R. P., and Cooper, J. L., 1987, Bicarbonate and ammonia changes in brain during spreading depression, Can. J. Physiol. Pharmacol. 65: 1099–1104.

    Article  PubMed  CAS  Google Scholar 

  • Krapf, R., Berry, C. A., and Verkman, A. S., 1988, Estimation of intracellular chloride activity in isolated perfused rabbit proximal convoluted tubules using a fluorescent indicator, Biophys. J. 53: 955–962.

    Article  PubMed  CAS  Google Scholar 

  • Lakshminarayanaiah, N., 1976, Membrane Electrodes, Academic Press, New York.

    Google Scholar 

  • Larson, M., and Spring, K., 1987, Volume regulation in epithelia, Curr. Top. Membr. Transp. 30: 105–123.

    Article  CAS  Google Scholar 

  • Lauf, P. K., McManus, T. J., Hass, M., Forbush, B., Duhn, J., Flatman, P. W., Saier, M. H., Jr., and Russell, J. M., 1987, Physiology and biophysics of chloride and cation cotransport across cell membranes, Fed. Proc. 46: 2377–2394.

    PubMed  CAS  Google Scholar 

  • Lee, C. O., 1981, Ionic activities in cardiac muscle cells and applications of ion-selective microelectrodes, Am. J. Physiol. 241: H459 - H478.

    PubMed  CAS  Google Scholar 

  • Lev, A. A., and Armstrong, W. M., 1975, Ionic activities in cells, Curr. Top. Membr. Transp. 6: 59–123.

    Article  CAS  Google Scholar 

  • Lux, H. D., 1974, Fast recording ion specific microelectrodes: Their use in pharmacological studies in the CNS, Neuropharmacology 13: 509–517.

    Article  PubMed  CAS  Google Scholar 

  • McCaig, D., and Leader, J. P., 1984, Intracellular chloride activity in the extensor digitorum longus (EDL) muscle of the rat, J. Membr. Biol. 81: 9–17.

    Article  PubMed  CAS  Google Scholar 

  • MacKnight, A. D. C., 1985, The role of anions in cellular volume regulation, Pfluegers Arch. 405 (Suppl. I): S12 - S16.

    CAS  Google Scholar 

  • Marranes, R., and DeHemptinne, A., 1978, Conduction velocity of the action potential in isolated cardiac fibers; transient effects under influence of organic anions, Arch. Int. Physiol. 86: I162 - I163.

    Article  Google Scholar 

  • Mauro, A., 1954, Electrochemical potential difference of chloride ion in the giant squid axon—sea water system, Fed. Proc. Fed. Am. Soc. Exp. Biol. 13: 96.

    Google Scholar 

  • Moody, G. J., and Thomas, J. D. R., 1971, Selective Ion Sensitive Electrodes, Merrow, Durham, England. Morf, W. E., 1981, The principles of ion-selective electrodes and of membrane transport, in: Studies in Analytical Chemistry, Volume 2, Akadémiai Kiadd, Budapest, and Elsevier, Amsterdam.

    Google Scholar 

  • Morf, W. E., Ruprecht, H., Oggenfuss, P., and Simon, W., 1985, Ion transport in asymmetric artificial membranes mediated by neutral carriers, in: Ion Measurements in Physiology and Medicine (M. Kessler, D. K. Harrison, and J. Höper, eds.), Springer-Verlag, Berlin, pp. 1–5.

    Google Scholar 

  • Morris, M. E., and Krnjevie, K., eds., 1987, Ion-Selective Microelectrodes and Excitable Tissues, Can. J. Physiol. Pharmacol. 65: 867–1110.

    Google Scholar 

  • Moser, H., 1985, Intracellular pH regulation in the sensory neurone of the stretch receptor of the crayfish (Astacus fluviatilis), J. Physiol. (London) 362: 23–38.

    CAS  Google Scholar 

  • Munoz, J.-L., Deyhimi, F., and Coles, J. A., 1983, Silanization of glass in the making of ion-sensitive microelectrodes, J. Neurosci. Methods 8: 231–247.

    Article  PubMed  CAS  Google Scholar 

  • Neild, T. O., and Thomas, R. C., 1973, New design for a chloride-sensitive microelectrode, J. Physiol. (London) 231: 7P - 8 P.

    CAS  Google Scholar 

  • Neild, T. O., and Thomas, R. C., 1974, Intracellular chloride activity and the effects of acetylcholine in snail neurones, J. Physiol. (London) 242: 453–470.

    CAS  Google Scholar 

  • Oberleithner, H., Guggino, W., and Giebisch, G., 1982, Mechanism of distal tubular chloride transport in Amphiuma kidney, Am. J. Physiol. 242: F331 - F339.

    PubMed  CAS  Google Scholar 

  • Orme, F. N., 1969, Liquid ion-exchanger microelectrodes, in: Glass Microelectrodes ( M. Lavallée, O. F. Schanne, and N. C. Hébert, eds.), Wiley, New York, pp. 376–395.

    Google Scholar 

  • Owen, J. D., Brown, H. M., and Saunders, J. H., 1975, Chloride activity in the giant cell of Aplysia, Biophys. J. 15: 45a.

    Google Scholar 

  • Palmer, L. G., and Civan, M. M., 1977, Distribution of Nat, K+ and Cl- between nucleus and cytoplasm in Chironomus salivary gland cells, J. Membr. Biol. 33: 41–61.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, R., 1959, Handbook of Electrochemical Constants, Butterworths, London.

    Google Scholar 

  • Pelzer, D., Trube, G., and Piper, H. M., 1984, Low resting potentials in single isolated heart cells due to membrane damage by the recording microelectrode, Pfluegers Arch. 400: 197–199.

    Article  CAS  Google Scholar 

  • Pollard, H. B., Creutz, C. E., Pazoles, C. J., and Hansen, J., 1977, Calcium binding properties of monovalent anions commonly used to substitute for chloride in physiological salt solutions, Anal. Biochem. 83: 311–314.

    Article  PubMed  CAS  Google Scholar 

  • Purves, R. D., 1981, Microelectrode Methods for Intracellular Recording and lontophoresis, Academic Press, New York.

    Google Scholar 

  • Rail, W., 1977, Core conductor theory and cable properties of neurons, in: Handbook of Physiology, Volume I, The Nervous System, Part 1, ( E. R. Kandel, ed.), American Physiological Society, Bethesda, Md., pp. 39–97.

    Google Scholar 

  • Reuss, L., 1985, Changes in cell volume measured with an electrophysiologic technique, Proc. Natl. Acad. Sci. USA 82: 6014–6018.

    Article  PubMed  CAS  Google Scholar 

  • Reuss, L., Constantin, J. L., and Bazile, J. E., 1987, Diphenylamine-2-carboxylate blocks Cl- HCO3 exchange in Necturus gallbladder epithelium, Am. J. Physiol. 253: C79 - C89.

    PubMed  CAS  Google Scholar 

  • Robinson, R. A., and Stokes, R. H., 1965, Electrolyte Solutions, 2nd ed. rev., Butterworths, London. Roos, A., and Boron, W. F., 1981, Intracellular pH, Physiol. Rev. 61: 296–434.

    Google Scholar 

  • Rosenberg, M., 1973, A comparison of chloride and citrate filled microelectrodes for d-c recording, J. Appl. Physiol. 35: 166–168.

    PubMed  CAS  Google Scholar 

  • Ross, J. W., 1969, Solid-state and liquid membrane ion-selective electrodes, in: Ion-Selective Electrodes (R. A. Durst, ed.), National Bureau of Standards Special Publication 314, pp. 57–88.

    Google Scholar 

  • Russell, J. M., and Brown, A. M., 1972a, Active transport of chloride by the giant neuron of the Aplysia abdominal ganglion, J. Gen. Physiol. 60:499–518.

    Google Scholar 

  • Russell, J. M., and Brown, A. M., 1972b, Active transport of potassium by the giant neuron of the Aplysia abdominal ganglion, J. Gen. Physiol. 60: 519–533.

    Article  PubMed  CAS  Google Scholar 

  • Sandblom, J., and Orme, F., 1972, Liquid membranes as electrodes and biological models, in: Membranes—A Series of Advances, Volume 1 ( G. Eisenman, ed.), Dekker, New York, pp. 125–177.

    Google Scholar 

  • Sandblom, J., Eisenman, G., and Walker, J. L., Jr., 1967, Electrical phenomena associated with the transport of ions and ion pairs in liquid ion-exchange membranes. I. Zero current properties, J. Physiol. Chem. 71: 3862–3870.

    Article  CAS  Google Scholar 

  • Saunders, J. H., and Brown, H. M., 1977, Liquid and solid-state Cl--sensitive microelectrodes, J. Gen. Physiol. 70: 507–530.

    Article  PubMed  CAS  Google Scholar 

  • Schulthess, P., Ammann, D., Simon, W., Caderas, C. Stepanek, R., and Kräutler, B., 1984, A lipophilic derivative of vitamin B12 as a selective carrier for anions, Hely. Chim. Acta 67: 1026–1032.

    Article  CAS  Google Scholar 

  • Schulthess, P., Ammann, D., Kräutler, B., Caderas, C., Stepanek, R., and Simon, W., 1985, Nitrite selective liquid membrane electrode, Anal. Chem. 57: 1397–1401.

    Article  CAS  Google Scholar 

  • Serve, G., Endres, W., and Grafe, P., 1988, Continuous electrophysiological measurements of changes in cell volume of motoneurons in the isolated frog spinal cord, Pfluegers Arch. 411: 410–415.

    Article  CAS  Google Scholar 

  • Sharp, A. P., and Thomas, R. C., 1981, The effects of chloride substitution on intracellular pH in crab muscle, J. Physiol. (London) 312: 71–80.

    CAS  Google Scholar 

  • Sollner, K., 1968, Membrane electrodes, Ann. N.Y. Acad. Sci. 148: 154–179.

    Article  PubMed  CAS  Google Scholar 

  • Sollner, K., and Shean, G. M., 1964, Liquid ion-exchange membranes of extreme selectivity and high permeability for anions, J. Am. Chem. Soc. 86: 1901–1902.

    Article  CAS  Google Scholar 

  • Spitzer, K. W., and Walker, J. L., Jr., 1980, Intracellular chloride activity in quiescent cat papillary muscle, Am. J. Physiol. 238: H487–H493.

    PubMed  CAS  Google Scholar 

  • Spring, K. R., and Ericson, A.-C., 1982, Epithelial cell volume modulation and regulation, J. Membr. Biol. 69: 169–176.

    Google Scholar 

  • Spring, K. R., and Kimura, G., 1978, Chloride reabsorption by renal proximal tubules of Necturus, J. Membr. Biol. 38: 233–254.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan, K., and Rechnitz, G. A., 1969, Selectivity studies on liquid membrane ion-selective electrodes, Anal. Chem. 40: 1203–1208.

    Article  Google Scholar 

  • Stein, W. D., 1986, Transport and Diffusion across the Cell Membrane, Academic Press, New York. Strickholm, A., and Wallin, B. G., 1965, Intracellular chloride activity of crayfish giant axons, Nature 208: 790–791.

    Google Scholar 

  • Tasaki, I., and Singer, I., 1968, Some problems involved in electric measurements of biological systems, Ann. N.Y. Acad. Sci. 148: 36–53.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, P. S., and Thomas, R. C., 1984, The effect of leakage on micro-electrode measurements of intracellular sodium activity in crab muscle fibres, J. Physiol. (London) 352: 539–550.

    CAS  Google Scholar 

  • Thomas, R. C., 1972, Intracellular sodium activity and the sodium pump in snail neurones, J. Physiol. (London) 220: 55–71.

    CAS  Google Scholar 

  • Thomas, R. C., 1976, The effect of carbon dioxide on the intracellular pH and buffering power of snail neurones, J. Physiol. (London) 255: 715–735.

    CAS  Google Scholar 

  • Thomas, R. C., 1977, The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurons, J. Physiol. (London) 273: 317–338.

    CAS  Google Scholar 

  • Thomas, R. C., 1978, Ion-Sensitive Intracellular Microelectrodes, Academic Press, New York.

    Google Scholar 

  • Thomas, R. C., 1985, Eccentric double micropipette suitable both for pHi microelectrodes and for intracellular iontophoresis, J. Physiol. (London) 371: 24 P.

    Google Scholar 

  • Thomas, R. C., and Cohen, C. J., 1981, A liquid ion-exchanger alternative to KCI for filling intracellular reference microelectrodes, Pfluegers Arch. 390: 96–98.

    Article  CAS  Google Scholar 

  • Thompson, S. M., Deisz, R. A., and Prince, D. A., 1988, Relative contributions of passive equilibrium and active transport to the distribution of chloride in mammalian cortical neurons, J. Neurophysiol. 60: 105–124.

    PubMed  CAS  Google Scholar 

  • Tsien, R. Y., 1980, Liquid sensors for ion-selective microelectrodes, Trends Neurosci. 3: 219–221.

    Article  CAS  Google Scholar 

  • Tsien, R. Y., 1983, Intracellular measurements of ion activities, Annu. Rev. Biophys. Bioeng. 12: 91–116.

    Article  PubMed  CAS  Google Scholar 

  • Tsien, R. Y., and Rink, T. J., 1980, Neutral carrier ion-selective microelectrodes for measurement of intracellular free calcium, Biochim. Biophys. Acta 599: 623–638.

    Article  PubMed  CAS  Google Scholar 

  • Tsien, R. Y., and Rink, T. J., 1981, Cat+-selective electrodes: A novel PVC-gelled neutral carrier mixture compared with other currently available sensors, J. Neurosci. Methods 4: 73–86.

    Article  PubMed  CAS  Google Scholar 

  • Vaughan-Jones, R. D., 1979a, Non-passive chloride distribution in mammalian heart muscle: Micro-electrode measurement of the intracellular chloride activity, J. Physiol. (London) 295: 83–109.

    CAS  Google Scholar 

  • Vaughan-Jones, R. D., 1979b, Regulation of chloride in quiescent sheep-heart Purkinje fibres studied using intracellular chloride and pH-sensitive micro-electrodes, J. Physiol. (London) 295: 111–137.

    CAS  Google Scholar 

  • Vaughan-Jones, R. D., 1982, Chloride activity and its control in skeletal and cardiac muscle, Philos. Trans. R. Soc. London Ser. B 299: 537–548.

    Article  CAS  Google Scholar 

  • Vaughan-Jones, R. D., 1986, An investigation of chloride—bicarbonate exchange in the sheep cardiac Purkinje fibre, J. Physiol. (London) 379: 377–406.

    CAS  Google Scholar 

  • Verkman, A. S., Chen, P.-Y., Davis, B., Fong, P., Illsley, N. P., and Krapf, R., 1988, Development of chloride-sensitive fluorescent indicators, in: Cellular and Molecular Basis of Cystic Fibrosis ( G. Mastella and P. M. Quinton, eds.), San Francisco Press, San Francisco, pp. 471–478.

    Google Scholar 

  • Verkman, A. S., Sellers, M. C., Chao, A. C., Leung, T., and Ketcham, R., 1989a, Synthesis and characterization of improved chloride-sensitive fluorescent indicators for biological applications, Anal. Biochem. 178: 355–361.

    Article  PubMed  CAS  Google Scholar 

  • Verkman, A. S., Takla, R., Sefton, B., Basbaum, C., and Widdicombe, J. H., 19896, Fluorescence assay of chloride transport in liposomes reconstituted with chloride transporters, Biochemistry 28: 4240–4244.

    Google Scholar 

  • Walker, J. L., Jr., 1971, Ion specific liquid ion exchanger microelectrodes, Anal. Chem. 43 (3): 89A - 93A.

    CAS  Google Scholar 

  • Walker, J. L., Jr., and Brown, H. M., 1977, Intracellular ionic activity measurements in nerve and muscle, Physiol. Rev. 57: 729–778.

    PubMed  CAS  Google Scholar 

  • Wallin, B. G., 1967, Intracellular ion concentrations in single crayfish axons, Acta Physiol. Scand. 70: 419–430.

    Article  PubMed  CAS  Google Scholar 

  • Wegmann, D., Weiss, H., Ammann, D., Morf, W. E., Pretsch, E., Sugahara, K., and Simon, W., 1984, Anion-selective liquid membrane electrodes based on lipophilic quaternary ammonium compounds, Mikrochim. Acta 3: 1–16.

    Article  CAS  Google Scholar 

  • Wills, N. K., 1985, Apical membrane potassium and chloride permeabilities in surface cells of rabbit descending colon epithelium, J. Physiol. (London) 358: 433–445.

    CAS  Google Scholar 

  • Willumsen, N. J., Davis, C. W., and Boucher, R. C., 1989, Intracellular Cl- activity and cellular Cl- pathways in cultured human airway epithelium, Am. J. Physiol. 256: C1033 - C1044.

    PubMed  CAS  Google Scholar 

  • Woodbury, J. W., and Miles, P. R., 1973, Anion conductance of frog muscle membranes: One channel, two kinds of pH dependence, J. Gen. Physiol. 62: 324–353.

    Article  PubMed  CAS  Google Scholar 

  • World Precision Instruments, 1988, Electrodes, accessories and supplies, Cat. #2.

    Google Scholar 

  • Wright, F. S., and McDougal, W. S., 1972, Potassium-specific ion-exchanger microelectrodes to measure K+ activity in the renal distal tubule, Yale J. Biol. Med. 45: 373–383.

    CAS  Google Scholar 

  • Wuhrmann, P., Ineichen, H., Riesen-Willi, V., and Lezzi, M., 1979, Change in nuclear potassium electrochemical activity and puffing of potassium-sensitive salivary chromosome regions during Chironomus development, Proc. Natl. Acad. Sci. USA 76: 806–808.

    Article  PubMed  CAS  Google Scholar 

  • Wuthier, U., Pham, H. V., Zünd, R., Welti, D., Funck, R. J. J., Bezegh, A., Ammann, D., Pretsch, E., and Simon, W., 1984, Tin organic compounds as neutral carriers for anion selective electrodes, Anal. Chem. 56: 535–538.

    Article  CAS  Google Scholar 

  • Yamaguchi, H., 1986, Recording of intracellular Ca2+ from smooth muscle cells by sub-micron tip, double-barrelled Ca2+-selective microelectrodes, Cell Calcium 7: 203–219.

    Article  PubMed  CAS  Google Scholar 

  • Zeuthen, T., 1980, How to make and use double-barreled ion-selective microelectrodes, Curr. Top. Membr. Transp. 13: 31–47.

    Article  CAS  Google Scholar 

  • Zeuthen, T., 1985, The advantages of transient experiments over steady-state experiments, in: Ion Measurements in Physiology and Medicine ( M. Kessler, D. K. Harrison, and J. Hüper, eds.), Springer-Verlag, Berlin, pp. 150–157.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alvarez-Leefmans, F.J., Giraldez, F., Russell, J.M. (1990). Methods for Measuring Chloride Transport across Nerve, Muscle, and Glial Cells. In: Alvarez-Leefmans, F.J., Russell, J.M. (eds) Chloride Channels and Carriers in Nerve, Muscle, and Glial Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9685-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9685-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9687-2

  • Online ISBN: 978-1-4757-9685-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics