Skip to main content

Coherent Excitonic and Free Carrier Dynamics in Bulk GaAs and Heterostructures

  • Chapter
Coherent Optical Interactions in Semiconductors

Part of the book series: NATO ASI Series ((NSSB,volume 330))

Abstract

Coherent dynamics in atomic and molcular systems has been investigated for a long time. The first spin echo experiment1 was performed in 1950 on protons in a water solution of Fe+++ ions. Pulses in the radio frequency range were generated by means of a gated oscillator with pulse widths between 20 μs and a few milliseconds. With these pulses dephasing times of the order of 10 ms have been measured. In the 1960s echo experiments were brought into the visible range.2,3 A Q-switched ruby laser produced pulses of approximately 10 ns duration which were used to observe photon echoes from ruby. In this case the dephasing times were of the order of 100 ns. For the observation of such coherent dynamics the pulse width has to be shorter than the dephasing time. In semiconductors typical dephasing times are much shorter, they are in the range of a few picoseconds down to some femtoseconds. Therefore, experiments had to wait until the development of suitable lasers which were able to generate sub-picosecond pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. L. Hahn, Spin echoes, Phys. Rev. 80, 580 (1950).

    ADS  MATH  Google Scholar 

  2. N. A. Kurnit, I. D. Abella, and S. R. Hartmann, Observation of a photon echo, Phys. Rev. Lett. 13, 567 (1964).

    ADS  Google Scholar 

  3. I. D. Abella, N. A. Kurnit, and S. R. Hartmann, Photon echoes, Phys. Rev. 141, 391 (1966).

    ADS  Google Scholar 

  4. J. Shah and R. C. C. Leite, Radiative recombination from photoexcited hot carriers in GaAs, Phys. Rev. Lett. 22, 1304 (1969).

    ADS  Google Scholar 

  5. C. V. Shank, R. L. Fork, R. F. Leheny, and J. Shah, Dynamics of photoexcited GaAs band-edge absorption with subpicosecond resolution, Phys. Rev. Lett. 42, 112 (1979).

    ADS  Google Scholar 

  6. R. L. Fork, C. H. Brito Cruz, P. C. Becker, and C. V. Shank, Compression of optical pulses to six femtoseconds by using cubic phase compensation, Optics Lett. 12, 483 (1987).

    ADS  Google Scholar 

  7. J. Shah, Photoexcited hot carriers: From cw to 6 fs in 20 years, Solid State Electron. 32, 1051 (1989).

    ADS  Google Scholar 

  8. J. Shah, B. Deveaud, T. C. Damen, W. T. Tsang, A. C. Gossard, and P. Lugli, Determination of intervalley scattering rates in GaAs by subpicosecond luminescence spectroscopy, Phys. Rev. Lett. 59, 2222 (1987).

    ADS  Google Scholar 

  9. H. J. Polland, W. W. Rühle, H. J. Queisser, and K. Ploog, Fröhlich interaction in two-dimensional GaAs/AlGaAs systems, Phys. Rev. B 36, 7722 (1987).

    ADS  Google Scholar 

  10. K. Leo, W. W. Rühle, H. J. Queisser, and K. Ploog, Reduced dimensionality of hot-carrier relaxation in GaAs quantum wells, Phys. Rev. B 37, 7121 (1988).

    ADS  Google Scholar 

  11. J. F. Ryan and M. Tatham, Picosecond optical studies of 2D electron — 2D phonon dynamics, Solid State Electron. 32, 1429 (1989).

    ADS  Google Scholar 

  12. T. Elsaesser, J. Shah, L. Rota, and P. Lugli, Initial thermalization of photoexcited carriers in GaAs studied by femtosecond luminescence spectroscopy, Phys. Rev. Lett. 66, 1757 (1991).

    ADS  Google Scholar 

  13. L. Rota, P. Lugli, T. Elsaesser, and J. Shah, Ultrafast thermalization of photoexcited carriers in polar semiconductors, Phys. Rev. B 47, 4226 (1993).

    ADS  Google Scholar 

  14. H. Kurz, Femtosecond spectroscopy of hot carrier relaxation in bulk semiconductors, Semicond. Sci.Technol. 7, B124 (1992).

    Google Scholar 

  15. R. G. Ulbrich, J. A. Kash, and J. C. Tsang, Hot-electron recombination at neutral acceptors in GaAs: A cw probe of femtosecond intervalley scattering, Phys. Rev. Lett. 62, 949 (1989).

    ADS  Google Scholar 

  16. J. A. Kash, Carrier-carrier scattering in GaAs: Quantitative measurements from hot (e, A0) luminescence, Phys. Rev. B 40, 3455 (1989).

    ADS  Google Scholar 

  17. D. W. Snoke, W. W. Rühle, Y.-C. Lu, and E. Bauser, Nonthermalized distributions of electrons on picosecond time scale in GaAs, Phys. Rev. Lett. 68, 990 (1992).

    ADS  Google Scholar 

  18. C. L. Peterson and S. A. Lyon, Observation of hot-electron energy loss through the emission of phonon-plasmon coupled modes in GaAs, Phys. Rev. Lett. 65, 760 (1990).

    ADS  Google Scholar 

  19. J. L. Oudar, A. Migus, D. Hulin, G. Grillon, J. Etchepare, and A. Antonetti, Femtosecond orientational relaxation of photoexcited carriers in GaAs, Phys. Rev. Lett. 53, 384 (1984).

    ADS  Google Scholar 

  20. H. Roskos, B. Rieck, A. Seilmeier, and W. Kaiser, Carrier cooling in nonpolar semiconductors studied with subpicosecond time-resolution, Solid State Electron. 32, 1437 (1989).

    ADS  Google Scholar 

  21. C. W. W. Bradley, R. A. Taylor, and J. F. Ryan, Femtosecond electron and hole therm alizati on in AlGaAs, Solid State Electron. 32, 1173 (1989).

    ADS  Google Scholar 

  22. T. Gong, P. M. Fauchet, J. F. Young, and P. J. Kelly, Femtosecond gain dynamics due to initial thermalization of hot carriers injected at 2 eV in GaAs, Phys. Rev. B 44, 6542 (1991).

    ADS  Google Scholar 

  23. P. M. Fauchet and T. Gong, Femtosecond dynamics of hot-carriers in GaAs, in Ultrafast Lasers Probe Phenomena in Semiconductors and Superconductors, edited by R. Alfano, SPIE Proc. Vol. 1677 (SPIE, 1992) p. 25.

    Google Scholar 

  24. J.-P. Foing, D. Hulin, M. Joffre, M. K. Jackson, J.-L. Oudar, C. Tanguy, and M. Combescot, Absorption edge singularities in highly excited semiconductors, Phys. Rev. Lett. 68, 110 (1992).

    ADS  Google Scholar 

  25. W. Pötz and P. Kocevar, Electronic power transfer in pulsed laser excitation of polar semiconductors, Phys. Rev. B 28, 7040 (1983).

    ADS  Google Scholar 

  26. T. F. Zheng, W. Cai, P. Hu, and M. Lax, Simulation of ultrafast relaxation of photoexcited electrons via analytical distribution functions, Solid State Electron. 32, 1089 (1989).

    ADS  Google Scholar 

  27. K. Leo and J. H. Collet, Influence of electron-hole scattering on the plasma thermalization in doped GaAs, Phys. Rev. B 44, 5535 (1991).

    ADS  Google Scholar 

  28. A. A. Grinberg and S. Luryi, Nonstationary quasiperiodic energy distribution of an electron gas upon ultrafast thermal excitation, Phys. Rev. Lett. 65, 1251 (1990).

    ADS  Google Scholar 

  29. A. A. Grinberg, S. Luryi, N. L. Schryer, R. K. Smith, C. Lee, U. Ravaioli, and E. Sangiorgi, Adiabatic approach to the dynamics of nonequilibirium electron ensembles in semiconductors, Phys. Rev. B 44, 10536 (1991).

    ADS  Google Scholar 

  30. K. El Sayed, T. Wicht, H. Haug, and L Bányai, Study of the Coulomb Boltzmann kinetics in a quasi-twodimensional electron gas by eigenfunction expansions and Monte Carlo simulations, Z. Phys. B 86, 345 (1992).

    ADS  Google Scholar 

  31. J. Collet and T. Amand, Athermal and thermal relaxation of high density electron-hole plasma in GaAs, Physica 134B, 394 (1985).

    Google Scholar 

  32. R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, Carrier-carrier scattering and optical dephasing in highly excited semiconductors, Phys. Rev. B 45, 1107 (1992).

    ADS  Google Scholar 

  33. M. A. Osman and D. K. Ferry, Monte Carlo investigation of the electron-hole-interaction effects on the ultrafast relaxation of hot photoexcited carriers in GaAs, Phys. Rev. B 36, 6018 (1987).

    ADS  Google Scholar 

  34. P. Lugli, P. Bordone, S. Gualdi, P. Poli, and S. M. Goodnick, Hot phonons in quantum well systems, Solid-State Electron. 32, 1881 (1989).

    ADS  Google Scholar 

  35. P. Lugli, P. Bordone, L. Reggiani, M. Rieger, P. Kocevar, and S. M. Goodnick, Monte Carlo studies of nonequilibrium phonon effects in polar semiconductors and quantum wells. I. Laser photoexcitation, Phys. Rev. B 39, 7852 (1989).

    ADS  Google Scholar 

  36. C. J. Stanton, D. W. Bailey, and K. Hess, Monte Carlo modeling of femtosecond relaxation processes in AlGaAs/GaAs quantum wells, IEEE J. Quantum Electron. QE-24, 1614 (1988).

    ADS  Google Scholar 

  37. C. J. Stanton, D. W. Bailey, and K. Hess, Femtosecond pump, continuum probe nonlinear absorption in GaAs, Phys. Rev. Lett. 65, 231 (1990).

    ADS  Google Scholar 

  38. D. W. Bailey, M. A. Artaki, C. J. Stanton, and K. Hess, Ensemble Monte Carlo simulations of femtosecond thermalization of low-energy photoexcited electrons in GaAs quantum wells, J. Appl. Phys. 62, 4638 (1987).

    ADS  Google Scholar 

  39. D. K. Ferry, A. M. Kriman, H. Hida, and S. Yamaguchi, Collision retardation and its role in femtosecond-laser excitation of semiconductor plasmas, Phys. Rev. Lett. 67, 633 (1991).

    ADS  Google Scholar 

  40. D. W. Bailey, C. J. Stanton, and K. Hess, Numerical studies of femtosecond carrier dynamics in GaAs, Phys. Rev. B 42, 3423 (1990).

    ADS  Google Scholar 

  41. U. Hohenester, P. Supancic, P. Kocevar, X. Q. Zhou, W. Kütt, and H. Kurz, Subpicosecond thermaliztion and relaxation of highly photoexcited electrons and holes in intrinsic and p-type gaas and inp, Phys. Rev. B 47, 13233 (1993).

    ADS  Google Scholar 

  42. A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, and H. Morkoç, “Dressed excitons” in a multiple-quantum-well structure: Evidence for an optical Stark effect with femtosecond response time, Phys. Rev. Lett. 56, 2748 (1986).

    ADS  Google Scholar 

  43. W. H. Knox, D. S. Chemla, D. A. B. Miller, J. B. Stark, and S. Schmitt-Rink, Femtosecond ac Stark effect in semiconductor quantum wells: Extreme low-and high-intensity limits, Phys. Rev. Lett. 1989, 1189(1989).

    ADS  Google Scholar 

  44. P. C. Becker, H. L. Fragnito, C. H. Brito Cruz, R. L. Fork, J. E. Cunningham, J. E. Henry, and C. V. Shank, Femtosecond photon echoes from band-to-band transitions in GaAs, Phys. Rev. Lett. 61, 1647 (1988).

    ADS  Google Scholar 

  45. Y. Masumoto, S. Shionoya, and T. Takagahara, Optical dephasing of excitonic polaritons in CuCl studied by time-resolved, nondegenerate four-wave mixing, Phys. Rev. Lett. 51, 923 (1983).

    ADS  Google Scholar 

  46. L. Schultheis, M. D. Sturge, and J. Hegarty, Photon echoes from two-dimensional excitons in GaAs-AlGaAs quantum wells, Appl. Phys. Lett. 47, 995 (1985).

    ADS  Google Scholar 

  47. L. Schultheis, J. Kuhl, A. Honold, and C. W. Tu, Picosecond phase coherence and orientational relaxation of excitons in GaAs, Phys. Rev. Lett. 57, 1797 (1986).

    ADS  Google Scholar 

  48. A. Honold, L. Schultheis, J. Kuhl, and C. W. Tu, Reflected degenerate four-wave mixing on GaAs single quantum wells, Appl. Phys. Lett. 52, 2105 (1988).

    ADS  Google Scholar 

  49. J. Kuhl, A. Honold, L. Schultheis, and C. W. Tu, Optical dephasing and orientational relaxation of Wannier excitons and free carriers in GaAs and GaAs/AlGaAs quantum wells, Adv. in Solid State Phys. 29, 157 (1989).

    Google Scholar 

  50. E. O. Göbel, Ultrafast spectroscopy of semiconductors, Adv. in Solid State Phys. 30, 269 (1990).

    Google Scholar 

  51. K. Leo, E. O. Göbel, T. C. Damen, J. Shah, S. Schmitt-Rink, W. Schäfer, J. F. Müller, K. Köhler, and P. Ganser, Subpicosecond four-wave mixing in GaAs/AlGaAs quantum wells, Phys. Rev. B 44, 5726 (1991).

    ADS  Google Scholar 

  52. G. Noll, U. Siegner, S. G. Shevel, and E. O. Göbel, Picosecond stimulated photon echo due to intrinsic excitations in semiconductor mixed crystals, Phys. Rev. Lett. 64, 792 (1990).

    ADS  Google Scholar 

  53. D. Fröhlich, A. Kulik, B. Uebbing, A. Mysyrowicz, V. Langer, H. Stolz, and W. von der Osten, Coherent propagation and quantum beats of quadrupole polaritons in CuO, Phys. Rev. Lett. 67, 2343 (1991).

    ADS  Google Scholar 

  54. E. O. Göbel, K. Leo, T. C. Damen, J. Shah, S. Schmitt-Rink, W. Schäfer, J. F. Müller, and K. Köhler, Quantum beats of excitons in quantum wells, Phys. Rev. Lett. 64, 1801 (1990).

    ADS  Google Scholar 

  55. V. Langer, H. Stolz, and W. von der Osten, Observation of quantum beats in the resonance fluorescence of free excitons, Phys. Rev. Lett. 64, 854 (1990).

    ADS  Google Scholar 

  56. K. Leo, T. C. Damen, J. shah, E. O. Göbel, and K. Köhler, Quantum beats of light hole and heavy hole excitons in quantum wells, Appl. Phys. Lett. 57, 19 (1990).

    ADS  Google Scholar 

  57. K. Leo, J. Shah, E. O. Göbel, T. C. Damen, K. Köhler, and P. Ganser, Tunneling in semiconductor heterostructures studied by subpicosecond four-wave mixing, Appl. Phys. Lett. 56, 2031 (1990).

    ADS  Google Scholar 

  58. K. Leo, Dynamics of wavepackets in GaAs/AlGaAs heterostructures, Adv. in Solid State Phys. 32, 97 (1992).

    ADS  Google Scholar 

  59. H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, D. A. B. Miller, A. M. Fox, S. Schmitt-Rink, and K. Köhler, Coherent submillimeter-wave emission from charge oscillations in a double-well potential, Phys. Rev. Lett. 68, 2216 (1992).

    ADS  Google Scholar 

  60. J. Feldmann, Bloch oscillations in a semiconductor superlattice, Adv. in Solid State Phys. 32, 81 (1992).

    Google Scholar 

  61. C. Waschke, H. G. Roskos, R. Schwedler, K. Leo, H. Kurz, and K. Köhler, Coherent submilimeter-wave emission from Bloch oscillations in a semiconductor superlattice, Phys. Rev. Lett. 70, 3319 (1993).

    ADS  Google Scholar 

  62. K. Leo, M. Wegener, J. Shah, D. S. Chemla, E. O. Göbel, T. C. Damen, S. Schmitt-Rink, and W. Schäfer, Effects of coherent polarization interactions on time-resolved degenerate four-wave mixing, Phys. Rev. Lett. 65, 1340 (1990).

    ADS  Google Scholar 

  63. S. Weiss, M.-A. Mycek, J.-Y. Bigot, S. Schmitt-Rink, and D. S. Chemla, Collective effects in excitonic free induction decay: Do semiconductors and atoms emit coherent light in different ways?, Phys. Rev. Lett. 69, 2685 (1992).

    ADS  Google Scholar 

  64. D.-S. Kim, J. Shah, J. E. Cunningham, T. C. Damen, W. Schäfer, M. Hartmann, and S. Schmitt-Rink, Giant excitonic resonance in time-resolved four-wave mixing in quantum wells, Phys. Rev. Lett. 68, 1006 (1992).

    ADS  Google Scholar 

  65. D.-S. Kim, J. Shah, T. C. Damen, W. Schäfer, F. Jahnke, S. Schmitt-Rink, and K. Köhler, Unusually slow temporal evolution of femtosecond four-wave-mixing signals in intrinsic GaAs quantum wells: Direct evidence for the dominance of interaction effects, Phys. Rev. Lett. 69, 2725 (1992).

    ADS  Google Scholar 

  66. A. Lohner, K. Rick, P. Leisching, A. Leitenstorfer, T. Elsaesser, T. Kuhn, F. Rossi, and W. Stolz, Coherent optical polarization of bulk GaAs studied by femtosecond photon-echo spectroscopy, Phys. Rev. Lett. 71, 77 (1993).

    ADS  Google Scholar 

  67. P. C. M. Planken, M. C. Nuss, I. Brener, K. W. Goossen, M. S. C. Luo, S. L. Chuang, and L. Pfeiffer, Terahertz emission in single quantum wells after coherent optical excitation of light hole and heavy hole excitons, Phys. Rev. Lett. 69, 3800 (1992).

    ADS  Google Scholar 

  68. C. Comte and G. Mahler, Dynamic Stark effect in interacting electron-hole systems: Light enhanced excitons, Phys. Rev. B 34, 7164 (1986).

    ADS  Google Scholar 

  69. C. Comte and G. Mahler, Excitonic reference state of a model semiconductor in the dynamic Stark regime, Phys. Rev. B 38, 10517 (1988).

    ADS  Google Scholar 

  70. R. Zimmermann, K. Kilimann, W. D. Kraeft, D. Kremp, and G. Röpke, Dynamical screening and self-energy of excitons in the electron-hole plasma, phys. stat. sol (b) 90, 175 (1978).

    ADS  Google Scholar 

  71. R. Zimmermann, On the dynamical stark effect of excitons: The low field limit, phys. stat. sol (b) 146, 545 (1988).

    ADS  Google Scholar 

  72. S. Schmitt-Rink, C. Ell, and H. Haug, Many-body effects in the absorption, gain, and luminescence spectra of semiconductor quantum well structures, Phys. Rev. B 33, 1183 (1986).

    ADS  Google Scholar 

  73. S. Schmitt-Rink, D. S. Chemla, and H. Haug, Nonequilibrium theory of the optical Stark effect and spectral hole burning in semiconductors, Phys. Rev. B 37, 941 (1988).

    ADS  Google Scholar 

  74. H. Haug, Microscopic theory of the optical band edge nonlinearities, in Optical Nonlinearities and Instabilities in Semiconductors, edited by H. Haug (Academic, San Diego, 1988) p. 53.

    Google Scholar 

  75. F. Bechstedt and S. Glutsch, Non-equilibrium screening and plasmons in a coherently pumped semiconductor, J. Phys.: Condens. Matter 3, 7145 (1991).

    ADS  Google Scholar 

  76. M. Hartmann, H. Stolz, and R. Zimmermann, Kinetics of screening in optically excited semiconductors, phys. stat. sol (b) 159, 35 (1990).

    ADS  Google Scholar 

  77. K. Henneberger, W. Schäfer, and F. Jahnke, Optical and transport nonlinearities in laser excited semiconductors, Physica Scripta T35, 129 (1991).

    ADS  Google Scholar 

  78. K. Henneberger and H. Haug, Nonlinear optics and transport in laser-excited semiconductors, Phys. Rev. B 38, 9759 (1988).

    ADS  Google Scholar 

  79. A. V. Kuznetsov, Interaction of ultrashort light pulses with semiconductors: Effective Bloch equations with relaxation and memory effects, Phys. Rev. B 44, 8721 (1991).

    ADS  Google Scholar 

  80. D. B. Tran Thoai and H. Haug, Coulomb quantum kinetics in pulse-excited semiconductors, Z. Phys. B 91, 199(1993).

    ADS  Google Scholar 

  81. H. Haug and C. Ell, Coulomb quantum kinetics in a dense electron gas, Phys. Rev. B 46, 2126 (1992).

    ADS  Google Scholar 

  82. W. Schäfer, Theory of dense nonequilibrium exciton systems, in Optical Nonlinearities and Instabilities in Semiconductors, edited by H. Haug (Academic, San Diego, 1988) p. 133.

    Google Scholar 

  83. I. Balslev, R. Zimmermann, and A. Stahl, Two-band density-matrix approach to nonlinear optics of excitons, Phys. Rev. B 40, 4095 (1989).

    ADS  Google Scholar 

  84. A. Stahl, RPA-dynamics of the electronic density matrix in a two-band semiconductor, Z. Phys. B 72, 371 (1988).

    ADS  Google Scholar 

  85. A. Stahl, Coupled two-level systems and the dynamics of semiconductor electrons, phys. stat. sol (b) 159, 327 (1990).

    ADS  Google Scholar 

  86. R. Zimmermann, Theory of dephasing in semiconductor optics, phys. stat. sol (b) 173, 129 (1992).

    ADS  Google Scholar 

  87. S. Schmitt-Rink and D. S. Chemla, Collective excitations and the dynamical Stark effect in a coherently driven exciton system, Phys. Rev. Lett. 57, 2752 (1986).

    ADS  Google Scholar 

  88. M. Lindberg and S. W. Koch, Theory of the optical Stark effect in semiconductors under ultrashort-pulse excitation, phys. stat. sol (b) 150, 379 (1988).

    ADS  Google Scholar 

  89. M. Lindberg and S. W. Koch, Effective Bloch equations for semiconductors, Phys. Rev. B 38, 3342 (1988).

    ADS  Google Scholar 

  90. W. Schäfer, F. Jahnke, and S. Schmitt-Rink, Many-particle effects on transient four-wave-mixing signals in semiconductors, Phys. Rev. B 47, 1217 (1993).

    ADS  Google Scholar 

  91. E. Heiner, Evolution equations for highly excited direct semiconductors in the athermal stage, phys. stat. sol (b) 146, 655 (1988).

    ADS  Google Scholar 

  92. E. Heiner and W. Kleinig, Solutions of optical Bloch equations for highly excited direct gap semiconductors in a time-dependent mean-field approach, Physica Scripta 46, 88 (1992).

    ADS  Google Scholar 

  93. R. Zimmermann and M. Hartmann, Resonant and off-resonant light-matter interaction in semiconductors, phys. stat. sol (b) 150, 365 (1988).

    ADS  Google Scholar 

  94. M. Wegener, D. S. Chemla, S. Schmitt-Rink, and W. Schäfer, Line shape of time-resolved four-wave mixing, Phys. Rev. A 42, 5675 (1990).

    ADS  Google Scholar 

  95. T. Kuhn and F. Rossi, Analysis of coherent and incoherent phenomena in photoexcited semiconductors: A Monte Carlo approach, Phys. Rev. Lett. 69, 977 (1992).

    ADS  Google Scholar 

  96. T. Kuhn and F. Rossi, Monte Carlo simulation of ultrafast processes in photoexcited semiconductors: Coherent and incoherent dynamics, Phys. Rev. B 46, 7496 (1992).

    ADS  Google Scholar 

  97. L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962).

    MATH  Google Scholar 

  98. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon, Oxford, 1981).

    Google Scholar 

  99. C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent material, Rev. Mod. Phys. 55, 645 (1983).

    ADS  Google Scholar 

  100. C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulations (Springer, Wien, 1989).

    Google Scholar 

  101. R. Zimmermann, Transverse relaxation and polarizations specifics in the dynamical Stark effect, phys. stat. sol (b) 159, 317 (1990).

    ADS  Google Scholar 

  102. R. Zimmermann, Carrier kinetics for ultrafast optical pulses, J. Lumin. 53, 187 (1992).

    Google Scholar 

  103. R. Zimmermann and J. Wauer, Non-Markovian relaxation in semiconductors: An exactly soluble model, Proc. DPC (Boston, 1993), to be published in J. Lumin.

    Google Scholar 

  104. D. B. Tran Thoai and H. Haug, Band-edge quantum kinetics for coherent ultrashort-pulse spectroscopy in polar semiconductors, Phys. Rev. B 47, 3574 (1993).

    ADS  Google Scholar 

  105. F. Rossi, T. Kuhn, J. Schilp, and E. Schöll, Analysis of the coupled coherent and incoherent dynamics in photoexcited semicondutors: A Monte Carlo approach, in Proc. 21st ICPS, Beijing, China, edited by P. Jiang and H. Zheng (World Scientific, Singapore, 1992) p. 165.

    Google Scholar 

  106. A. V. Kuznetsov, Coherent and non-Markovian effects in ultrafast relaxation of photoexcited hot carrier: A model study, Phys. Rev. B 44, 13381 (1991).

    ADS  Google Scholar 

  107. J. Schilp, T. Kuhn, and G. Mahler, Energy relaxation and dephasing of photoexcited carriers: Memory effects and cross terms between different interactions, Proc. 8th HCIS (Oxford, 1993), to be published in Semicond. Sci. Technol.

    Google Scholar 

  108. G. C. Cho, W. Kütt, and H. Kurz, Subpicosecond time-resolved coherent-phonon oscillations in GaAs, Phys. Rev. Lett. 65, 764 (1990).

    ADS  Google Scholar 

  109. W. Kütt, Coherent phonons in III-V-compounds, Adv. in Solid State Phys. 32, 113 (1992).

    Google Scholar 

  110. H. Haug and S. Schmitt-Rink, Electron theory of the optical properties of laser-excited semiconductors, Prog. Quant. Electr. 9, 3 (1984).

    ADS  Google Scholar 

  111. D. C. Scott, R. Binder, and S. W. Koch, Ultrafast dephasing through acoustic plasmon undamping in nonequilibrium electron-hole plasmas, Phys. Rev. Lett. 69, 347 (1992).

    ADS  Google Scholar 

  112. M. Lindberg, R. Binder, and S. W. Koch, Theory of the semiconductor photon echo, Phys. Rev. A 45, 1865(1992).

    ADS  Google Scholar 

  113. F. Rossi, S. Haas, and T. Kuhn, Analysis of coherent and incoherent ultrafast dynamics in photoexcited semiconductors: A Monte Carlo approach, Proc. 8th HCIS (Oxford, 1993), to be published in Semicond. Sci. Technol.

    Google Scholar 

  114. T. Yajima and Y. Taira, Spatial optical parametric coupling of picosecond light pulses and transverse relaxation effect in resonant media, J. Phys. Soc. Jpn. 47, 1620 (1979).

    ADS  Google Scholar 

  115. J. R. Kuklinski and S. Mukamel, Generalized semiconductor Bloch equations: Local fields and transient gratings, Phys. Rev. B 44, 11253 (1991).

    ADS  Google Scholar 

  116. R. G. Ulbrich, Dense nonequilibrium excitations: Band edge absorption spectra of highly excited Gallium Arsenide, in Optical Nonlinearities and Instabilities in Semiconductors, edited by H. Haug (Academic, San Diego, 1988) p. 121.

    Google Scholar 

  117. G. Bastard, C. Delalande, R. Ferreira, and H. W. Liu, Assisted relaxation and vertical transport of electrons, holes and excitons in semiconductor heterostructures, J. Lumin. 44, 247 (1989).

    Google Scholar 

  118. A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, Excitonic effects in coupled quantum wells, Phys. Rev. B 44, 6231 (1991).

    ADS  Google Scholar 

  119. A. P. Heberle, W. W. Rühle, M. G. W. Alexander, and K. Köhler, Resonances in tunneling between quantum wells, Semcond. Sci. Technol. 7, B421 (1992).

    Google Scholar 

  120. R. Ferreira, P. Rolland, Ph. Roussignol, C. Delalande, A. Vinattieri, L. Carraresi, M. Colocci, N. Roy, B. Sermage, J. F. Palmier, and B. Etienne, Time-resolved exciton transfer in GaAs/AlGaAs double-quantum-well structures, Phys. Rev. B 45, 11782 (1992).

    ADS  Google Scholar 

  121. S.-L. Chuang, S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, Exciton Green’s-function approach to optical absorption in a quantum well with an applied electric field, Phys. Rev. B 43, 1500 (1991).

    ADS  Google Scholar 

  122. Y. Z. Hu, R. Binder, and S. W. Koch, Photon echo and valence-band mixing in semiconductor quantum wells, Phys. Rev. B 47, 15679 (1993).

    ADS  Google Scholar 

  123. S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, Optical rectification at semiconductor surfaces, Phys. Rev. Lett. 68, 102 (1992).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kuhn, T. et al. (1994). Coherent Excitonic and Free Carrier Dynamics in Bulk GaAs and Heterostructures. In: Phillips, R.T. (eds) Coherent Optical Interactions in Semiconductors. NATO ASI Series, vol 330. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9748-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9748-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9750-3

  • Online ISBN: 978-1-4757-9748-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics