Skip to main content

Colorimetry of Self-Luminous Displays

  • Chapter
Color in Electronic Displays

Part of the book series: Defense Research Series ((DRSS,volume 3))

Abstract

Color is that aspect of visible radiant energy by which an observer may distinguish differences between two structure-free fields of the same size and shape, such as may be caused by differences in the spectral composition of the radiant energy concerned in the observation (Wyszecki & Stiles, 1982). Since color is not a property of light itself, but rather the result of light interacting with a nervous system of some complexity, color is a psychophysical concept. Nevertheless, as scientists and engineers, we subscribe to the view that functional relationships exist between changes in light energy and color and that understanding these relationships will allow us to create more pleasant environments and image generating devices that are matched to the image-processing mechanisms of the human visual system. In fact, a failure to understand the effects of color on human visual performance and preference can lead to low productivity or accident in the workplace or to products whose color rendition is inadequate for their intended applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abney, W. de W. (1910). On the change in hue of spectrum colours by dilution with white light. Proceedings of the Royal Society (London), A83, 120–127.

    Google Scholar 

  • Adams, E.Q. (1942). X-Z planes in the 1931 I.C.I. system of colorimetry. Journal of the Optical Society of America, 32, 168–173.

    Article  Google Scholar 

  • Benzschawel, T. (1987). Colorimetry of displays. In J. Morreale (Ed.), Society for Information Display Seminar Lecture Notes, Volume II (pp. 8.1–8. 43 ). Playa del Rey, CA: Society for Information Display.

    Google Scholar 

  • Benzschawel, T., Brill, M.H., and Cohn, T.E. (1986). Analysis of human color mechanisms using sinusoidal spectral power distributions. Journal of the Optical Society of America A, 3, 1713–1725.

    Article  Google Scholar 

  • Benzschawel, T., and Guth, S.L. (1984). ATDN: Toward a uniform color space. Color Research and Application, 9, 133–141.

    Article  Google Scholar 

  • Benzschawel, T., Walraven, J., and Rogowitz, B.R. (1987). Studies of color constancy. Investigative Ophthalmology and Visual Science, 28 (Supplement), 92.

    Google Scholar 

  • Boynton, R.M. (1971). Color vision. In J.W. Kling and L.A. Riggs (Eds.) Experimental psychology. New York: Holt, Rinehart, and Winston.

    Google Scholar 

  • Boynton, R.M. (1979). Human color vision. New York: Holt, Rinehart, and Winston.

    Google Scholar 

  • Boynton, R.M. (1986). A system of photometry and colorimetry based on cone excitations. Color Research and Application, 11, 244–252.

    Article  Google Scholar 

  • Braudaway, G.W. (1985). A procedure for optimum choice of a small number of colors from a large color palette for color imaging (Tech. Report RC-11367). Yorktown Heights, NY: IBM.

    Google Scholar 

  • Carter, E.C., and Carter R.C. (1981). Color and conspicuousness. Journal of the Optical Society of America, 71, 723–729.

    Article  Google Scholar 

  • Carter, R.C., and Carter E.C. (1982). High-contrast sets of colors. Applied Optics, 21, 2936 2939.

    Google Scholar 

  • Carter, R.C., and Carter E.C. (1983). CIE L*u*v* color-difference equations for self-luminous displays. Color Research and Application, 8, 252–253.

    Article  Google Scholar 

  • CIE (1978). Light as a true visual quantity: principles of measurement (Publication CIE No. 41.) Paris: Author.

    Google Scholar 

  • CIE (1986). Colorimetry (2nd ed., Publication CIE No. 15. 2 ). Paris: Author.

    Google Scholar 

  • Coblentz, W.W., and Emerson, W.B. (1918). Relative sensibility of the average eye to light of different colors and some practical applications of radiation problems. U.S. Bureau of Standards Bulletin, 14, 167–236.

    Google Scholar 

  • DeCorte, W. (1985). High contrast sets of colours for colour CRTs under conditions of illumination. Displays, 6, 95–100.

    Article  Google Scholar 

  • Donofrio, R.L. (1971). Color in color TV–a phosphor approach. Color Engineering, February, 11–14.

    Google Scholar 

  • Gibson, K.S., and Tyndall, E.P.T. (1923). Visibility of radiant energy. U.S. Bureau of Standards Bulletin, 19, 131–191.

    Google Scholar 

  • Grassman, H. (1853). Zur Theorie der Farbenmischung. Poggendorfs Annalen der Physik und Chemie, 89, 69 (also published the same year in English as: On the theory of compound colors, Philosophical Magazine, 7, 254–264.

    Google Scholar 

  • Guild, J. (1931). The colorimetric properties of the spectrum. Philosophical Transactions of the Royal Society (London), 230A, 149–187.

    Google Scholar 

  • Guth, S.L. (1972). A new vector model. In J.J. Vos, L.F.C. Friele and P.L. Walraven (Eds.), Color metrics (pp. 82–98 ). Soesterberg, The Netherlands: Institute for Perception TNO.

    Google Scholar 

  • Guth, S.L., Donley, N.V., and Marrocco, R.T. (1969). On luminance additivity and related topics. Vision Research, 9, 537–575.

    Article  Google Scholar 

  • Guth, S.L., and Lodge, H.R. (1973). Heterochromatic additivity, foveal spectral sensitivity, and a new color model. Journal of the Optical Society of America, 63, 450–462.

    Article  Google Scholar 

  • Guth, S.L., Massof, R.W., and Benzschawel, T. (1980). Vector model for normal and dichromatic color vision. Journal of the Optical Society of America, 70, 197–212

    Article  Google Scholar 

  • Hurvich, L.M., and Jameson, D. (1955). Some quantitative aspects of an opponent-colors theory. II. Brightness, saturation, and hue in normal and dichromatic vision. Journal of the Optical Society of America, 45, 602–616.

    Article  Google Scholar 

  • Judd, D.B. (1951). Report of the U.S. secretariat committee on colorimetry and artificial daylight. In CIE Proceedings, 1 (Part 7, p. 11 ). Paris: CIE.

    Google Scholar 

  • Judd, D.B., and Eastman, A.A. (1971). Prediction of target visibility from the colors of target and surround. Illuminating Engineering, 66, 256–266.

    Google Scholar 

  • Judd, D.B., and Wyszecki, G. (1975). Color in business, science and industry ( 3rd ed. ). New York: Wiley.

    Google Scholar 

  • Judd, D.B., and Yonemura, G.T. (1969, November). Target conspicuity and its dependence on color and angular subtense for gray and foliage green surrounds (U.S. National Bureau of Standards Report No. 10–120 ). Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Kelly, K.L. (1943). Color designations for lights. Journal of the Optical Society of America, 33, 627–632.

    Article  Google Scholar 

  • Krantz, D.H. (1975). Color measurements and color theory: I. Representation theorem for Grassman structures. Journal of Mathematical Psychology, 12, 283–303.

    Article  MathSciNet  MATH  Google Scholar 

  • Laycock, J. (1983). Colour contrast calculations for displays viewed in illumination (RAE Tech. Report 83089 ). Farnborough, Hants, UK: Royal Aircraft Establishment.

    Google Scholar 

  • Laycock, J., and Viveash, J.P. (1982). Calculating the perceptibility of monochrome and colour displays viewed under various illumination conditions. Displays, 3, 89–99.

    Article  Google Scholar 

  • Lippert, T.M. (1986). Color-difference prediction of legibility performance for CRT raster imagery. In SID Digest (pp. 86–89 ). New York: Palisades Institute for Research Services, Inc.

    Google Scholar 

  • MacAdam, D.L. (1937). Projective transformations of ICI color specifications. Journal of the Optical Society of America, 27, 294–299.

    Article  Google Scholar 

  • MacAdam, D.L. (1942). Visual sensitivities to color differences in daylight. Journal of the Optical Society of America, 32, 247–274.

    Article  Google Scholar 

  • MacAdam, D.L. (1950). Maximum attainable luminous efficiency for various chromaticities. Journal of the Optical Society of America, 40, 120.

    Article  Google Scholar 

  • MacAdam, D.L. (1974). Uniform color scales. Journal of the Optical Society of America, 64, 1691–1702.

    Article  Google Scholar 

  • MacAdam, D.L. (1985). Color measurement ( 2nd ed. ). New York: Springer-Verlag.

    Book  Google Scholar 

  • MacLeod, D.I.A., and Boynton, R.M. (1979). Chromaticity diagram showing cone excitation

    Google Scholar 

  • MacLeod, D.I.A., and Boynton, R.M. (1979).by stimuli of equal luminance. Journal of the Optical Society of America, 69, 1183–1186.

    Google Scholar 

  • Mollon, J.D., and Cavonius, C.R. (1986). The discriminability of colours on CRT displays. Journal of the Institution of Electronic and Radio Engineers (UK), 56, 107–110.

    Article  Google Scholar 

  • Newhall, S.M., Nickerson, D., and Judd, D.B. (1943). Final report of the OSA subcommittee on the spacing of the Munsell colors. Journal of the Optical Society of America, 33, 385–418.

    Article  Google Scholar 

  • Phillips, P.L. (1985). Minimum colour differences required to recognize small objects on a colour CRT. In Colour in Information Technology and Visual Displays (IERE Publication No. 61, pp. 85–91 ). London: Institution of Electronic and Radio Engineers.

    Google Scholar 

  • Pointer, M.R. (1974). Colour discrimination as a function of observer adaptation. Journal of the Optical Society of America, 64, 750–759.

    Article  Google Scholar 

  • Pointer, M.R. (1981). A comparison of the CIE 1976 colour spaces. Color Research and Application, 6, 108–118.

    Article  Google Scholar 

  • Post, D.L. (1984). CIELUV/CIELAB and self-luminous displays: another perspective. Color Research and Application, 9, 244–245.

    Article  Google Scholar 

  • Post, D.L., Costanza, E.B., and Lippert, T.M. (1982). Expressions of color contrast as equivalent achromatic contrast. In Proceedings of the Human Factors Society 26th Annual Meeting (pp. 581–585 ). Santa Monica, CA: Human Factors Society.

    Google Scholar 

  • Post, D.L., Lippert, T.M., and Snyder, H.L. (1983). Color contrast metrics for head-up displays. In Proceedings of the Human Factors Society 27th Annual Meeting (pp. 933937 ). Santa Monica, CA: Human Factors Society.

    Google Scholar 

  • Purdy, D. McL. (1931). Spectral hue as a function of intensity. American Journal of Psychology, 43, 541–559.

    Article  Google Scholar 

  • Robertson, A.R. (1977). The CIE 1976 colour spaces. Color Research and Application, 2, 7–11.

    Google Scholar 

  • Silverstein, L.D., and Merrifield, R.M. ( 1985, July). The development and evaluation of color systems for airborne applications (Report No. DOT/FAA/PM-85–19). Washington, DC: U.S. Department of Transportation.

    Google Scholar 

  • Smith, V.C., and Pokorny, J. (1972). Spectral sensitivity of color blind observers and the cone photopigments. Vision Research, 12, 2059–2071.

    Article  Google Scholar 

  • Smith, V.C., and Pokorny, J. (1975). Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Research, 15, 161–171.

    Article  Google Scholar 

  • Sproson, W.N. (1983). Colour science in television and display systems. Bristol, UK: Adam Hilger Ltd.

    Google Scholar 

  • Stevens, J.C., and Stevens, S.S. (1963). Brightness function: effects of adaptation. Journal of the Optical Society of America, 53, 375–385.

    Article  Google Scholar 

  • Teichner, W.H. (1979). Color and visual information coding. Proceedings of the Society for Information Display, 20, 3–9.

    Google Scholar 

  • Vos, J.J. (1978). Colorimetric and photometric properties of a 2 deg fundamental observer. Color Research and Application, 3, 125–128.

    Article  Google Scholar 

  • Vos, J.J., and Walraven, P.L. (1971). On the derivation of the foveal receptor primaries. Vision Research, 11, 799–818.

    Article  Google Scholar 

  • Wandell, B.A. (1985). The synthesis and analysis of color images (Tech. Report NASATM-86844). Moffett Field, CA: NASA.

    Google Scholar 

  • Willmer, E.N., and Wright, W.D. (1945). Colour sensitivity of the fovea centralis. Nature, 156, 119–121.

    Article  Google Scholar 

  • Wright, D.W. (1929–1930). A redetermination of the mixture curves of the spectrum. Transactions of the Optical Society (London), 31, 201.

    Google Scholar 

  • Wyszecki, G. (1963). Proposal for a new color-difference formula. Journal of the Optical Society of America, 53, 1318–1319.

    Article  Google Scholar 

  • Wyszecki, G., and Stiles, W.S. (1982). Color science ( 2nd ed. ). New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Benzschawel, T. (1992). Colorimetry of Self-Luminous Displays. In: Widdel, H., Post, D.L. (eds) Color in Electronic Displays. Defense Research Series, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9754-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9754-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9756-5

  • Online ISBN: 978-1-4757-9754-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics