Skip to main content

Interpretation of Straight Line Correspondences

  • Chapter
Computational Analysis of Visual Motion

Part of the book series: Advances in Computer Vision and Machine Intelligence ((ACVM))

Abstract

We want to study the problem of recovering the position and displacement of a rigid body of straight lines in space from its projections on a plane. We are particularly interested in computational schemes that take rigid line structures into account. A rigid line structure is a finite subfamily of a rigid body of straight lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Liu and T. S. Huang, Estimation of Rigid Body Motion Using Straight Line Correspondences, in: Proceedings of the IEEE Workshop on Motion: Representation and Analysis, Charleston, SC, pp. 47–51 (1986).

    Google Scholar 

  2. Y. Liu and T. S. Huang, Estimation of Rigid Body Motion Using Straight Line Correspondences: Further Results, in: Proceedings of the International Conference on Pattern Recognition, Paris, pp. 306–307 (1986).

    Google Scholar 

  3. Y. Liu and T. S. Huang, A Linear Algorithm for Motion Estimation Using Straight Line Correspondences, Computer Vision, Graphics, and Image Processing, Vol. 44, 1988, pp. 3557.

    Google Scholar 

  4. O. Faugeras, F. Lustman, and G. Toscani, Motion and Structure from Motion from Point and Line Matches, in: Proceedings of the First International Conference on Computer Vision, London, pp. 25–34 (1987).

    Google Scholar 

  5. M. Spetsakis and J. Aloimonos, Closed Form Solution to the Structure from Motion Problem from Line Correspondences, in: Proceedings of the Sixth AAAI National Conference on Artificial Intelligence, pp. 738–743 (1987).

    Google Scholar 

  6. J. Weng, Y. Liu, T. S. Huang, and N. Ahuja, Estimating Motion/Structure from Line Correspondences: A Robust Linear Algorithm and Uniqueness Theorems, in: Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 387–392 (1988).

    Chapter  Google Scholar 

  7. A. Mitiche and G. Habelrih, Interpretation of Straight Line Correspondences Using Angular Relations, Pattern Recognition, Vol. 22, 1989, pp. 299–308.

    Article  Google Scholar 

  8. D. Dubé and A. Mitiche, The Incremental Rigidity Scheme for Structure from Motion: The Line-Based Formulation, in: First European Conference on Computer Vision, Antibes, France, pp. 292–296 (1990).

    Google Scholar 

  9. A. Mitiche, O. Faugeras, and J. K. Aggarwal, Counting Straight Lines, Computer Vision, Graphics, and Image Processing, Vol. 47, 1989, pp. 353–360.

    Google Scholar 

  10. R. Laganière and A. Mitiche, On Combining Points and Lines in an Image Sequence to Recover 3D Structure and Motion, in: IEEE Workshop on Visual Motion, Irvine, CA, pp. 221228 (1989).

    Google Scholar 

  11. T. Buchanan, On the Critical Set for Photogrammetric Reconstruction Using Line Tokens in P3(C), Geometriae Dedicata, Vol. 44, 1992, pp. 223–232.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Mitiche and R. Laganiere, Interpreting 3D lines, in: Traditional and Non-traditional Robotic Sensors (T. C. Henderson, ed.), pp. 313–327, Springer-Verlag, New York — NATO ASI Series (1990).

    Google Scholar 

  13. R. Jain, Dynamic Vison, in: Proc. 9th International Conference on Pattern Recognition, Rome, pp. 226–235 (1988).

    Google Scholar 

  14. E. L. Walker and M. Herman, Geometric Reasoning for Constructing 3D Scene Descriptions from Images, Artificial Intelligence, Vol. 37, 1988, pp. 275–290.

    Article  Google Scholar 

  15. R. A. Brooks, Symbolic Reasoning among 3D Models and 2D Images, Artificial Intelligence, Vol. 17, 1981, pp. 285–348.

    Article  Google Scholar 

  16. T. Kanade, Recovery of the 3D Shape of an Object from a Single View, Artificial Intelligence, Vol. 17, 1981, pp. 409–460.

    Article  Google Scholar 

  17. S. T. Barnard, Interpreting Perspective Images, Artificial Intelligence,Vol. 21, 1983, pp. 435462.

    Google Scholar 

  18. P. G. Mulgaonkar, L. G. Shapiro, and R. M. Haralick, Shape from Perspective: A Rule-Based Approach, Computer Vision, Graphics, and Image Processing, Vol. 36, 1986, pp. 298–320.

    MATH  Google Scholar 

  19. D. G. Lowe and T. O. Binford, The Recovery of 3D Structure from Image Curves, IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol. 7, No. 3, 1985, pp. 320326.

    Google Scholar 

  20. V. S. Huang, L. S. Davis, and T. Matsuyama, Hypothesis Integration in Understanding Systems, Computer Vision, Graphics, and Image Processing, Vol. 36, 1986, pp. 321–371.

    Google Scholar 

  21. D. M. McKeown, W. A. Harvey, and J. McDermott, Rule-Based Interpretation of Aerial Imagery, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 7, No. 5, 1985, pp. 570–585.

    Article  Google Scholar 

  22. M. Herman and T. Kanade, The 3D MOSAIC Scene Understanding System, in: Proceedings of the Image Understanding Workshop, New Orleans, pp. 137–148 (1984).

    Google Scholar 

  23. J. Aloimonos, Purposive and Qualitative Active Vision, in: Proceedings of the DARPA Image Understanding Workshop, pp. 816–828 (1990).

    Google Scholar 

  24. J. Aloimonos, I. Weiss, and A. Bandopaday, Active Vision, in: Proceedings of the First International Conference on Computer Vision, London, pp. 35–54 (1987).

    Google Scholar 

  25. R. Bajcsy, Active Perception, Proceedings of the IEEE, Vol. 76, No. 8, 1988, pp. 996–1005.

    Article  Google Scholar 

  26. K. Nakayama and S. Shimojo, Intermediate and Higher Order Aspects of Motion Processing: Temporal and Spatial Pooling of Velocity Signals and the Role of Hidden Lines and Surfaces, in: Neural Mechanisms of Visual Perception (D. Lam and C. Gilbert, eds.), pp. 281–296, Portfolio Publishing Company, The Woodlands, TX (1989).

    Google Scholar 

  27. R. M. Haralick and L. G. Shapiro, The Consistent Labelling Problem: Part I, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 1, No. 2, 1979, pp. 173–184.

    Article  MATH  Google Scholar 

  28. R. M. Haralick and G. L. Elliot, Increasing Tree Search Efficiency for Constraint Satisfaction Problems, Artificial Intelligence, Vol. 14, 1980, pp. 263–313.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mitiche, A. (1994). Interpretation of Straight Line Correspondences. In: Computational Analysis of Visual Motion. Advances in Computer Vision and Machine Intelligence. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9785-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9785-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9787-9

  • Online ISBN: 978-1-4757-9785-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics