Skip to main content

R-Matrix Techniques for Intermediate Energy Scattering and Photoionization

  • Chapter
Computational Methods for Electron—Molecule Collisions
  • 202 Accesses

Abstract

One of the most interesting challenges facing theories of electron-molecule collisions is to provide accurate descriptions of collisions at intermediate energies where large numbers of electronic states of the target are strongly coupled and where there are significant resonant processes. In this region there are an infinite number of open channels including ionizing channels. In order to obtain accurate representations of the target wavefunctions it may be necessary to use large configuration interaction (CI) expansions. In view of these difficulties it is perhaps not surprising that so far there have been few investigations of the topic. In this chapter the progress which has been made to apply R-matrix theory to intermediate energy scattering will be reviewed. Some ideas concerning possible future work are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.G. Burke, C.J. Noble and P. Scott, Proc. R. Soc A 410 341 (1987).

    Article  Google Scholar 

  2. A.L. Smith, Phil. Trans. Roy. Soc. Lond. A 268 169 (1970).

    Article  ADS  Google Scholar 

  3. P.G. Burke and T.G. Webb, J. Phys. B: At. Mol. Phys. 13 L131 (1970).

    Article  Google Scholar 

  4. C. Bloch, Nucl. Phys. 4 503 (1957).

    Article  MATH  Google Scholar 

  5. P.G. Burke, I. Mackey and I. Shimamura, J. Phys. B: At. Mol. Phys. 10 2497 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  6. C. Duneczky, R.W. Wyatt, D. Chatfield, K. Haug, D.W. Schwenke, D.G. Truhlar, Y. Sun and D.J. Kouri, Comp. Phys. Commun. 53 357 (1989).

    Article  ADS  Google Scholar 

  7. H. Feshbach, Adv. Phys. (NY) 19 287 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. I. Bray and A.T. Stelbovics, Phys. Rev. Letts. 69 53 (1992).

    Article  ADS  Google Scholar 

  9. D. Teillet-Billy, L. Malegat and J.P. Gauyacq, J. Phys. B: At. Mol. Phys. 20 3201 (1987).

    Article  ADS  Google Scholar 

  10. I. Shimamura, R-matrix theories, in: “Electronic and Atomic Collisions”, G. Watel, ed., North-Holland, Amsterdam (1978).

    Google Scholar 

  11. R.K. Nesbet, Phys. Rev. A 6 2975 (1981).

    Article  ADS  Google Scholar 

  12. C.J. Noble, P.G. Burke and S. Salvini, J. Phys. B: At. Mol. Phys. 15 3779 (1982).

    Article  ADS  Google Scholar 

  13. P.G. Burke and V.M. Burke, to be published (1994).

    Google Scholar 

  14. W. Duch, “GRMS or Graphical Representation of Model Spaces”, (Lecture Notes in Chemistry, 42), Springer-Verlag, Berlin (1986).

    Google Scholar 

  15. V.M. Burke and C.J. Noble, Comp. Phys. Commun, in press (1994).

    Google Scholar 

  16. M. Le Dourneuf, J.M. Launay and P.G. Burke, J. Phys. B: At. Mol. Opt. Phys. 23 L559 (1990).

    Article  Google Scholar 

  17. T.T. Scholz, J. Phys. B: At. Mol. Opt. Phys. 24 2127 (1991).

    Article  ADS  Google Scholar 

  18. P.G. Burke, K.A. Berrington and C.V. Sukumar, J. Phys. B: At. Mol. Phys. 14 289 (1981).

    Article  ADS  Google Scholar 

  19. M.R.F. Siggel, J.B. West, M.A. Hayes, A.C. Parr, J.L. Dehmer and I. Iga, J. Chem. Phys. 99 1556 (1993)

    Article  ADS  Google Scholar 

  20. J.L. Dehmer, P.M. Dehmer, J.B. West, M.A. Hayes, M.R.F. Siggel and A.C. Parr, J. Chem. Phys. 97 7911 (1992).

    Article  ADS  Google Scholar 

  21. A.D. Buckingham, B.J. Orr and J.M. Sichel, Phil. Trans. Roy. Soc. Lond. A 268 147 (1970)

    Article  ADS  Google Scholar 

  22. J.C. Tully, R.S. Berry and B.J. Dalton, Phys. Rev. 178 95 (1968)

    Article  ADS  Google Scholar 

  23. D. Dill and J.L. Dehmer, J. Chem. Phys. 61 692 (1974)

    Article  ADS  Google Scholar 

  24. R.J.W. Henry and L. Lipsky, Phys. Rev. 153 51 (1967).

    Article  ADS  Google Scholar 

  25. N.A. Cherepkov and V.V. Kuznetsov, At. Mol. Clust. 7 271 (1980)

    Article  Google Scholar 

  26. N.A. Cherepkov, Adv. At. Mol. Phys. 19 395 (1983).

    Article  ADS  Google Scholar 

  27. D. Dill, J. Chem. Phys. 65 1130 (1976).

    Article  ADS  Google Scholar 

  28. P.G. Burke, Electron and photon collisions with molecules, in: “Collision Theory for Atoms and Molecules”, F.A. Gianturco, ed., Plenum, New York (1989); unpublished notes.

    Google Scholar 

  29. M.E. Rose, “Elementary Theory of Angular Momentum”, John Wiley, New York (1957).

    MATH  Google Scholar 

  30. C.N. Yang, Phys. Rev. 74 764 (1948).

    Article  ADS  MATH  Google Scholar 

  31. B.I. Schneider, M. Le Dourneuf and P.G. Burke, J. Phys. B: At. Mol. Phys. 12 L365 (1979).

    Article  Google Scholar 

  32. P.G. Burke and M.J. Seaton, J. Phys. B: At. Mol. Phys. 17 L683 (1984)

    Article  ADS  Google Scholar 

  33. M.J. Seaton, J. Phys. B: At. Mol. Phys. 18 2111 (1985).

    Article  ADS  Google Scholar 

  34. K.A. Berrington, P.G. Burke, K. Butler, M.J. Seaton, P.J. Storey, K.T. Taylor and Y. Yan, J. Phys. B: At. Mol. Opt. Phys. 20 6379 (1987)

    Article  ADS  Google Scholar 

  35. M.J. Seaton, J. Phys. B: At. Mol. Opt. Phys. 19 2601 (1986)

    Article  ADS  Google Scholar 

  36. Y. Yan and M.J. Seaton, J. Phys. B: At. Mol. Phys. 20 6409 (1987).

    Article  ADS  Google Scholar 

  37. J. Tennyson, C.J. Noble and P.G. Burke, Int. J. Q. Chem. XXIX 1033 (1986).

    Article  Google Scholar 

  38. J. Tennyson, J. Phys. B: At. Mol. Opt. Phys. 19 4255 (1986).

    Article  ADS  Google Scholar 

  39. A.C. Parr, J.E. Hardis, S.H. Southworth, C.S. Feigerle, T.A. Ferrett, D.M.P. Holland, F.M. Quinn, B.R. Dobson, J.B. West, G.V. Marr and J.L. Dehmer, Phys. Rev. A 37 437 (1988).

    Article  ADS  Google Scholar 

  40. G. Raseev, J. Phys. B: At. Mol. Phys. 18 423 (1985).

    Article  ADS  Google Scholar 

  41. L.A. Collins, B.I. Schneider and C.J. Noble, Phys. Rev. 45 4610 (1992)

    Article  ADS  Google Scholar 

  42. I. Shimamura, C.J. Noble and P.G. Burke, Phys. Rev. A 41 3545 (1990); earlier references are listed in these papers.

    Article  ADS  Google Scholar 

  43. K. Nakashima, H. Takagi and H. Nakamura, J. Chem. Phys. 86 726 (1987).

    Article  ADS  Google Scholar 

  44. A. Giusti-Suzor, J.N. Bardsley and C. Derkits, Phys. Rev. 28 682 (1983).

    Article  ADS  Google Scholar 

  45. L.A. Collins, B.I. Schneider, C.J. Noble, C.W. McCurdy and S. Yabushita, Phys. Rev. Lett. 57 980 (1986).

    Article  ADS  Google Scholar 

  46. G. Breit and E.P. Wigner, Phys. Rev. 49 519 (1936).

    Article  ADS  MATH  Google Scholar 

  47. A.U. Hazi, Phys. Rev. A 19 920 (1979).

    Article  ADS  Google Scholar 

  48. J. Tennyson and C.J. Noble, Comput. Phys. Commun. 33 421 (1984).

    Article  ADS  Google Scholar 

  49. A.J.F. Siegert, Phys. Rev. 56 750 (1939).

    Article  ADS  Google Scholar 

  50. U. Fano, Phys. Rev. 124 1866 (1961).

    Article  ADS  MATH  Google Scholar 

  51. M.V. Basilevsky and V.M. Ryaboy, J. Comp. Chem. 8 683 (1987).

    Article  Google Scholar 

  52. K.W. McVoy, Nuclear resonance reactions and S-matrix analyticity, in: “Fundamentals in Nuclear Reaction Theory”, A. de Shalit and C. Villi, eds., IAEC, Vienna (1967).

    Google Scholar 

  53. B.I. Schneider, Phys. Rev. A 24 1 (1981).

    Article  ADS  Google Scholar 

  54. D.W. Schwenke, Theor. Chim. Acta. 74 381 (1988).

    Article  ADS  Google Scholar 

  55. C.J. Noble, M. Dörr and P.G. Burke, J. Phys. B: At. Mol. Opt. Phys. 26 2983 (1993).

    Article  ADS  Google Scholar 

  56. E.P. Wigner and L. Eisenbud, Phys. Rev. 74 29 (1947).

    Article  ADS  Google Scholar 

  57. L.M. Delves and J.N. Lyness, Math. Comput. 21 543 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  58. S.D. Conte and C. de Boor, “Elementary Numerical Analysis-An Algorithmic Approach”, McGraw-Hill, New York (1980).

    MATH  Google Scholar 

  59. M.P. Carpentier and A.F. Dos Santos, J. Comp. Phys. 45 210 (1982).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. B. Davies, J. Comp. Phys. 66 36 (1986).

    Article  ADS  MATH  Google Scholar 

  61. P.G. Burke, P. Francken and C.J. Joachain, J. Phys. B: At. Mol. Opt. Phys. 24 761 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Noble, C.J. (1995). R-Matrix Techniques for Intermediate Energy Scattering and Photoionization. In: Huo, W.M., Gianturco, F.A. (eds) Computational Methods for Electron—Molecule Collisions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9797-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9797-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9799-2

  • Online ISBN: 978-1-4757-9797-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics