Skip to main content

Abstract

Variational methods have proven to be invaluable tools in theoretical physics and chemistry, both for bound state problems and for the study of collision phenomena. For collisional problems variational methods can be grouped into two types, those based on the Schrödinger equation and those based on the Lippmann-Schwinger equation. The Hulthén-Kohn1–3 method belongs to the first type, and their modern development for electron-molecule scattering, incorporating complex boundary conditions, is reported in chapter 1 of this book by Rescigno et al.4 An offshoot of the Hulthén-Kohn variational method is the variational R-matrix method.5, 6 In chapter 8 of this book Schneider7 presents a general discussion of the R-matrix method, including the variational R-matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Hulthén, Kgl. Fysiograf. Sälbkap. Lund. Fröh. 14, 257 (1944).

    Google Scholar 

  2. W. Kohn, Phys. Rev. 74, 1763 (1948).

    Article  ADS  MATH  Google Scholar 

  3. S.I. Rubinow, Phys. Rev. 96, 218 (1954).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. T.N. Rescigno, C.W. McCurdy, A.E. Orel, and B.H. Lengsfield III, “The Complex Kohn Variational Method,” chapter 1 in this book.

    Google Scholar 

  5. J.L. Jackson, Phys. Rev. 83, 301 (1951).

    Article  ADS  MATH  Google Scholar 

  6. R.K. Nesbet, Variational Methods in Electron-Atom Scattering Theory, Plenum Press, New York (1980).

    Book  Google Scholar 

  7. B.I. Schneider, “An R-Matrix Approach to Electron Molecule Collisions,” chapter 8 in this book.

    Google Scholar 

  8. J. Schwinger, Phys. Rev. 56, 750 (1947).

    Google Scholar 

  9. R.R. Lucchese, K. Takatsuka, and V. McKoy, Phys. Rep. 131, 147 (1986).

    Article  ADS  Google Scholar 

  10. D.K. Watson, Adv. At. Mol. Phys. 25, 221 (1988).

    Article  ADS  Google Scholar 

  11. M.A.P. Lima, T.L. Gibson, L.M. Brescansin, V. McKoy, and W.M. Huo, “Studies of Elastic and Electronically Inelastic Electron-Molecule Collisions,” in Swarm Studies and Inelastic Electron-Molecule Collisions, ed. L.C. Pitchford, B.V. McKoy, A. Chutjian, and S. Trajmar, Springer-Verlag, New York (1987), pp 239–264.

    Chapter  Google Scholar 

  12. C. Winstead and V. McKoy, “Studies of Electron-Molecule Collisions on Highly Parallel Computers,” in Modern Electronic Structure Theory Vol. 2, ed. D. Yarkony, World Scientific, Singapore (1994).

    Google Scholar 

  13. D.K. Watson and V. McKoy, Phys. Rev. A 20, 1474 (1979).

    Article  ADS  Google Scholar 

  14. R.R. Lucchese, G. Raseev, and V. McKoy, Phys. Rev. A 25, 2572 (1982).

    Article  ADS  Google Scholar 

  15. See, for example, G. Bandarage and R.R. Lucchese, Phys. Rev. A 47, 1989 (1993)

    Article  ADS  Google Scholar 

  16. M.-T. Lee, K. Wang, and V. McKoy, J. Chem. Phys. 97, 3108 (1992).

    Article  ADS  Google Scholar 

  17. M.-T. Lee, M.M. Fujimoto. S.E. Michelin, L.E. Machado, and L.M. Brescansin, J. Phys. B. 25, L505 (1992).

    Article  ADS  Google Scholar 

  18. M.-T. Lee, S.E. Michelin, L.M. Brescansin, G.D. Meneses, and L.E. Machado, J. Phys. B. 26, L477 (1993).

    Article  ADS  Google Scholar 

  19. K. Takatsuka and V. McKoy, Phys. Rev. A 24, 2473 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  20. K. Takatsuka and V. McKoy, Phys. Rev. A 30, 1734 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  21. W.M. Huo and J.A. Sheehy (to be published).

    Google Scholar 

  22. C. Winstead, Q. Sun, and V. McKoy, J. Chem. Phys. 97, 9483 (1992).

    Article  ADS  Google Scholar 

  23. W.M. Huo and J.A. Sheehy, “Theoretical Study of Electron Scattering by Small Clusters and Adsorbates,” in Electron Collisions with Molecules, Clusters, and Surfaces, ed. H. Ehrhardt and L.A. Morgan, Plenum, New York (1994), pp 171–182.

    Google Scholar 

  24. W. Domcke, Phys. Rep. 208, 97 (1991).

    Article  ADS  Google Scholar 

  25. R.G. Newton, Scattering Theory of Waves and Particles, Springer-Verlag, New York (1982).

    MATH  Google Scholar 

  26. B.H. Bransden, R. Hewitt, and M. Plummer, J. Phys. B 21, 2645 (1988).

    Article  ADS  Google Scholar 

  27. S.K. Adhikari and I.H. Sloan, Phys. Rev. C 11, 1133 (1975).

    Article  ADS  Google Scholar 

  28. K. Takatsuka, R.R. Lucchese, and V. McKoy, Phys. Rev. A 24, 1812 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  29. J.T. Taylor, Scattering Theory, R. E. Krieger Publishing, FL (1983), pp. 274–279.

    Google Scholar 

  30. H. Feshbach Ann. Phys. 5. 357 (1958); ibid 19, 287 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. M.A.P. Lima and V. McKoy, Phys. Rev. A 38, 501 (1988).

    Article  ADS  Google Scholar 

  32. W.M. Huo and C.A. Weatherford, BuU. Am. Phys. Soc. 36, 1265 (1991).

    Google Scholar 

  33. C. Winstead and V. McKoy, Phys. Rev. A 47, 1514 (1993).

    Article  ADS  Google Scholar 

  34. T. Helgaker and P.R. Taylor, “Gaussian Basis Sets and Molecular Integrals” in Modern Electronic Structure Theory Vol. 2, ed. D. Yarkony, World Scientific, Singapore (1994).

    Google Scholar 

  35. T.H. Dunning, J. Chem. Phys. 53, 2823 (1970).

    Article  ADS  Google Scholar 

  36. T.H. Dunning, J. Chem. Phys. 90, 1007 (1989)

    Article  ADS  Google Scholar 

  37. and D.E. Woon and T.H. Dunning, J. Chem. Phys. 98, 1358 (1993).

    Article  ADS  Google Scholar 

  38. As an example of valence excitation calculations which neglected Rydberg states in the open channel configurations, see Q. Sun, C. Winstead, V. McKoy, J.S.E. Germano, and M.A.P. Lima, Phys. Rev. A 46, 2462 (1992).

    Article  ADS  Google Scholar 

  39. W.M. Huo, M.A.P. Lima, T.L. Gibson, and V. McKoy, Phys. Rev. A 36, 1642 (1987).

    Article  ADS  Google Scholar 

  40. B.H. Lengsfield, T.N. Rescigno, and C.W. McCurdy, Phys. Rev. A 44, 4296 (1991).

    Article  ADS  Google Scholar 

  41. W.M. Huo, T.L. Gibson, M.A.P. Lima, and V. McKoy, Phys. Rev. A 36, 1632 (1987).

    Article  ADS  Google Scholar 

  42. A.J.R. da Silva, M.A.P. Lima, L.M. Brescansin, and V. McKoy, Phys. Rev. A 41, 2903 (1991).

    Article  Google Scholar 

  43. T.L. Gibson, M.A.P. Lima, V. McKoy, and W.M. Huo, Phys. Rev. A 35, 2473 (1987).

    Article  ADS  Google Scholar 

  44. N.S. Ostlund, Chem. Phys. Letters, 34, 419 (1975).

    Article  ADS  Google Scholar 

  45. W.M. Huo and J.A. Sheehy (to be published). See also J.A. Sheehy and W.M. Huo, “Low-Energy Elastic Electron Scattering from Carbon Tetrafluoride” in ICPEAC Abstracts Vol. I, ed. T. Andersen, B. Fastrup, F. Folkmann, H. Knudsen, (1993), p. 259.

    Google Scholar 

  46. C. Winstead, Q. Sun, and V. McKoy, J. Chem. Phys. 98, 1105 (1993).

    Article  ADS  Google Scholar 

  47. W.M. Huo, Phys. Rev. A 38, 3303 (1988).

    Article  ADS  Google Scholar 

  48. A. Mann and F. Linder, J. Phys. B 25, 545 (1992).

    Article  ADS  Google Scholar 

  49. L. Boesten, H. Tanaka, A. Kobayashi, M.A. Dillon, and M. Kimura, J. Phys. B 25, 1607 (1992).

    Article  ADS  Google Scholar 

  50. D.W. Norcross and N.T. Padial, Phys. Rev. A 25, 226 (1982).

    Article  ADS  Google Scholar 

  51. S. Chung and C.C. Lin, Phys. Rev. A 17, 1874 (1978).

    Article  ADS  Google Scholar 

  52. A.W. Fliflet and V. McKoy, Phys. Rev. A 21, 1863 (1980).

    Article  ADS  Google Scholar 

  53. T.N. Rescigno, C.W. McCurdy, Jr., and V. McKoy, J. Phys. B 7, 2396 (1974).

    Article  ADS  Google Scholar 

  54. S.K. Srivastava and S. Jensen, J. Phys. B 10, 3341 (1977).

    Article  ADS  Google Scholar 

  55. See S. Trajmar, D.F. Register, and A. Chutjian, Phys. Rep. 97, 219 (1983) for renormalization of this data.

    Article  ADS  Google Scholar 

  56. M.A. Khakoo and S. Trajmar, Phys. Rev A 34, 146 (1986).

    Article  ADS  Google Scholar 

  57. T.N. Rescigno, B.H. Lengsfield, C.W. McCurdy, and S.D. Parker, Phys. Rev. A 45, 7800 (1992).

    Article  ADS  Google Scholar 

  58. H.J.R. Walters, J. Phys. B 4, 437 (1971).

    Article  ADS  Google Scholar 

  59. E.J. Heller and W.P. Reinhardt, Phys. Rev. A 7, 365 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  60. M.A.P. Lima, L.M. Brescansin, A.J.R. da Silva, C. Winstead, and V. McKoy, Phys. Rev. A 41, 327 (1990).

    Article  ADS  Google Scholar 

  61. C. Winstead, P.G. Hipes, M.A.P. Lima, and V. McKoy, J. Chem. Phys. 94, 5455 (1991).

    Article  ADS  Google Scholar 

  62. D.A. Levin, A.W. Fliflet, M. Ma, and V. McKoy, J. Comp. Phys. 28, 416 (1978).

    Article  ADS  Google Scholar 

  63. B.I. Schneider, Phys. Rev. A 31, 2188 (1985).

    Article  ADS  Google Scholar 

  64. M.H.F. Bettega, L.G. Ferreira, and M.A.P. Lima, Phys. Rev. A 47 1111 (1993).

    Article  ADS  Google Scholar 

  65. B.H. Lengsfield III and T.N. Rescigno, Phys. Rev. A 44, 2913 (1991).

    Article  ADS  Google Scholar 

  66. T.N. Rescigno, B.H. Lengsfield III, and A.E. Orel, J. Chem. Phys. 99, 5097 (1993).

    Article  ADS  Google Scholar 

  67. C.J. Gillan, O. Nagy, P.G. Burke, L.A. Morgan and C.J. Noble, J. Phys. B 20, 4585 (1987).

    Article  ADS  Google Scholar 

  68. S.E. Branchett and J. Tennyson, Phys. Rev. Letts. 64, 2889 (1990).

    Article  ADS  Google Scholar 

  69. W.M. Huo, V. McKoy, M.A.P. Lima, and T.L. Gibson, “Electron-Nitrogen Molecule Collisions in High-Temperature Nonequilibrium Air,” in Thermalphysical Aspects of Re-entry Flows, ed. J.N. Moss and CD. Sott, AIAA, New York (1986), pp. 152-196.

    Google Scholar 

  70. M. Berman, H. Estrada, L.S. Cederbaum, and W. Domcke, Phys. Rev. A 28, 1363 (1983).

    Article  ADS  Google Scholar 

  71. S.F. Wong, J.A. Michejda, and A. Stamatovic, unpublished data.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huo, W.M. (1995). The Schwinger Variational Method. In: Huo, W.M., Gianturco, F.A. (eds) Computational Methods for Electron—Molecule Collisions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9797-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9797-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9799-2

  • Online ISBN: 978-1-4757-9797-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics