Skip to main content

Inhomogeneous Fluids and the Freezing Transition

  • Chapter
Density Functional Theory

Part of the book series: NATO ASI Series ((NSSB,volume 337))

Abstract

We are concerned with the theory of non-uniform systems, mainly classical and mainly with short-ranged interactions. Perhaps the simplest realizable case in nature is a classical gas of N identical non-interacting atoms (coordinates \( {\overrightarrow r _i} \), momenta \( \overrightarrow {{p_i}} \), and each of mass m) subjected to a static spatially varying external potential φ(1), but otherwise confined to a volume V.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Evans, Microscopic theories of simple fluids and their interfaces, in: “Liquids at Interfaces,” J. Charvolin, J.F. Joanny, and J. Zinn-Justin, eds., Elsevier, Amsterdam (1989).

    Google Scholar 

  2. R. Evans, Density functional in the theory of nonuniform fluids, in: “Fundamentals of Inhomogeneous Liquids,” D. Henderson, ed., Marcel Dekker, New York (1992).

    Google Scholar 

  3. A.R. Ubbelohde, “Melting and Crystal Structure,” Clarendon Press, Oxford (1965).

    Google Scholar 

  4. M. Baus, J. Phys.: Condens. Matter 2:2111 (1990).

    Article  ADS  Google Scholar 

  5. J.-L. Barrat and J.-P. Hansen, Theory of inhomogeneous fluids and freezing, in: “Strongly Coupled Plasma Physics,” S. Ichimaru, ed., Elsevier, Amsterdam (1990).

    Google Scholar 

  6. A.D.J. Haymet, Freezing, in: “Fundamentals of Inhomogeneous Liquids,” D. Henderson, ed., Marcel Dekker, New York (1992).

    Google Scholar 

  7. H. Löwen, Physics Reports, to be published (1994).

    Google Scholar 

  8. J.G. Kirkwood and E. Monroe, J. Chem. Phys. 8:845 (1939).

    Article  ADS  Google Scholar 

  9. J.G. Kirkwood and E. Monroe, J. Chem. Phys. 9:514 (1940).

    Article  ADS  Google Scholar 

  10. P.C. Hohenberg and W. Kohn, Phys. Rev. B 136:864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  11. N.D. Mermin, Phys. Rev. A 137:1441 (1965).

    MathSciNet  ADS  Google Scholar 

  12. R. Lovett, J. Chem. Phys. 88:7739 (1988).

    Article  ADS  Google Scholar 

  13. W.F. Saam and C. Ebner, Phys. Rev. A 137:1113 (1976).

    Google Scholar 

  14. See, for example, J.-P. Hansen and I.R. McDonald, “Theory of Simple Liquids,” Academic Press, London (1986).

    Google Scholar 

  15. N.W. Ashcroft, Structure and properties, in: “Condensed Matter Physics,” J. Mahanty and M.P. Das, eds., World Scientific, Singapore (1989).

    Google Scholar 

  16. The implicit connection between the theories of inhomogeneous and homogeneous liquids has been noted by S.-C. Kim and G.L. Jones, Phys. Rev. A 41:2222 (1990).

    Article  ADS  Google Scholar 

  17. The notion that the theory of inhomogeneous liquids can be advanced by excursions into the study of inhomogeneous liquids has already arisen earlier; see for example, R.L. Henderson and N.W. Ashcroft, Phys. Rev. A 13:859 (1976), where the mean-density approximation is introduced.

    Article  ADS  Google Scholar 

  18. J.K. Percus, Phys. Rev. Lett. 8:462 (1962).

    Article  ADS  Google Scholar 

  19. J.K. Percus, The pair distribution function in classical statistical mechanics, in: “The Equilibrium Theory of Classical Fluids,” H.L. Frisch and J.L. Lebowitz, eds., Benjamin, New York (1964).

    Google Scholar 

  20. J.M.J. Van Leeuven, J. Groeneveld, and J. de Boer, Physica 25:792 (1959).

    Article  ADS  Google Scholar 

  21. Y. Rosenfeld and N.W. Ashcroft, Phys. Rev. A 20:1208 (1979).

    Article  ADS  Google Scholar 

  22. A.R. Demon and N.W. Ashcroft, Phys. Rev. A 41:2222 (1990).

    Article  ADS  Google Scholar 

  23. D.M. Kroll and B.B. Laird, Phys. Rev. A 42:4806 (1990).

    Article  ADS  Google Scholar 

  24. T.F. Meister and D.M. Kroll, Phys. Rev. A 31:4055 (1985).

    Article  ADS  Google Scholar 

  25. S. Nordholm, M. Jonson, and B.C. Freasier, Aust. J. Chem. 33:2139 (1980).

    Article  Google Scholar 

  26. see also M. Jonson and S. Nordholm, J. Chem. Phys. 79:4431 (1983).

    Article  ADS  Google Scholar 

  27. P. Tarazona, Mol. Phys. 52:847 (1984).

    Article  ADS  Google Scholar 

  28. W. Curtin and N.W. Ashcroft, Phys. Rev. A 32:2909 (1985).

    Article  ADS  Google Scholar 

  29. This form was already anticipated by Kirkwood and Monroe, J. Chem. Phys. 8:845 (1940).

    Article  ADS  Google Scholar 

  30. O. Gunnarsson, M. Jonson, and B.I. Lundqvist, Phys. Rev. B 20:3136 (1979).

    Article  ADS  Google Scholar 

  31. A.R. Denton and N.W. Ashcroft, Phys. Rev. A 39:4701 (1989).

    Article  ADS  Google Scholar 

  32. C. Likos and N.W. Ashcroft, Phys. Rev. Lett. 69:316 (1992).

    Article  ADS  Google Scholar 

  33. B. Bildstein and G. Kahl, Phys. Rev. E 47:1712 (1993).

    Article  ADS  Google Scholar 

  34. Y. Rosenfeld, J. Chem. Phys. 89:4272 (1988).

    Article  ADS  Google Scholar 

  35. Y. Rosenfeld, Phys. Rev. Lett. 63:980 (1989); see also. E. Kierlik and M.C. Rosinberg for a considerable elucidation of the method.

    Article  ADS  Google Scholar 

  36. N.W. Ashcroft and N.D. Mermin, “Solid State Physics,” Holt and Saunders, Philadelphia (1976).

    Google Scholar 

  37. See reference [29], Appendix N.

    Google Scholar 

  38. BJ. Alder, D.A. Young, and M.A. Mark, J. Chem. Phys. 56:3013 (1972), and previous papers of this group referenced there.

    Article  ADS  Google Scholar 

  39. For a cluster-variational theory addressing this issue, see B. Firey and N.W. Ashcroft, J. Chem. Phys. 82:2723 (1985).

    Article  ADS  Google Scholar 

  40. G. Baym, H.A. Bethe, C.J. Pethick, Nuclear Physics A 175:225 (1971).

    Article  ADS  Google Scholar 

  41. S. Alexander and J. McTague, Phys. Rev. Lett. 41:702 (1978).

    Article  ADS  Google Scholar 

  42. C.N. Likos and N.W. Ashcroft, J. Chem. Phys. 99:9090 (1993). C.N. Likos, Thesis, Cornell University (1993).

    Article  ADS  Google Scholar 

  43. L. Verlet and J.J. Weis, Phys. Rev. A 45:939 (1972).

    Article  ADS  Google Scholar 

  44. B.B. Laird, J. Chem. Phys. 97:2699 (1992).

    Article  ADS  Google Scholar 

  45. D. Frenkel and A.J.C. Ladd, Phys. Rev. Lett. 59:1169 (1987).

    Article  ADS  Google Scholar 

  46. See, for example, W.G.T. Kranendonk and D. Frenkel, J. Phys.: Condens. Matter 1:7735 (1989).

    Article  ADS  Google Scholar 

  47. J.-L. Barrat, M. Baus, and J.-P. Hansen, J. Phys. C 20:1413 (1987).

    Article  ADS  Google Scholar 

  48. see also M. Baus and J.-L. Colot, Mol. Phys. 55:653 (1985).

    Article  ADS  Google Scholar 

  49. S.J. Smithline and A.D.J. Haymet, J. Chem. Phys. 86:6486 (1987).

    Article  ADS  Google Scholar 

  50. S.J. Smithline and A.D.J. Haymet, J. Chem. Phys. 88:4104 (1988).

    Article  ADS  Google Scholar 

  51. S.W. Rick and A.D.J. Haymet, J. Chem. Phys. 90:1188 (1989).

    Article  ADS  Google Scholar 

  52. A.R. Denton and N.W. Ashcroft, Phys. Rev. A 42:7312 (1990).

    Article  ADS  Google Scholar 

  53. See also X.C. Zheng and D.W. Oxtoby, J. Chem. Phys. 93:4357 (1990).

    Article  ADS  Google Scholar 

  54. P. Bartlett, R.H. Ottewill, and PN. Pusey, J. Chem. Phys. 93:1299 (1992).

    Article  ADS  Google Scholar 

  55. P. Bartlett and R.H. Ottewill, J. Chem. Phys. 96:3306 (1992).

    Article  ADS  Google Scholar 

  56. R. Leidel and H. Wagner, J. Chem. Phys. 98:4142 (1993).

    Article  ADS  Google Scholar 

  57. J.T. Chayes, L. Chayes, and E. Lieb, Commun. Math. Phys. 93:57 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. TV. Ramakrishnan and M. Youssouff, Phys. Rev. B 19:2775 (1979).

    Article  ADS  Google Scholar 

  59. see also TV. Ramakrishnan, Pramana 22:365 (1984).

    Article  ADS  Google Scholar 

  60. A.D.J. Haymet and D. Oxtoby, J. Chem. Phys. 74:2559 (1981).

    Article  ADS  Google Scholar 

  61. J.D. McCoy, S.W. Rick, and A.D.J. Haymet, J. Chem. Phys. 90:4622 (1989).

    Article  ADS  Google Scholar 

  62. A.R. Demon, P. Nielaba, K.J. Runge, and N.W. Ashcroft, J. Phys.: Condens. Matter 3:593 (1991).

    Article  ADS  Google Scholar 

  63. G. Pastore and G. Senatore, Density functional theory of quantum Wigner crystallization, in: “ Strongly Coupled Plasma Physics,” S. Ichimaru, ed., Elsevier, Amsterdam (1990).

    Google Scholar 

  64. S. Moroni and G. Senatore, Phys. Rev. B 44:9864 (1991).

    Article  ADS  Google Scholar 

  65. S. Moroni and G. Senatore, Europhys. Lett. 16:373 (1991).

    Article  ADS  Google Scholar 

  66. M. Levy, these proceedings.

    Google Scholar 

  67. K. Moulopoulos and N.W. Ashcroft, Phys. Rev. B 41:6500 (1990).

    Article  ADS  Google Scholar 

  68. K. Moulopoulos and N.W. Ashcroft, Phys. Rev. B 45:11518 (1992).

    Article  ADS  Google Scholar 

  69. E. Lieb and J. Lebowitz, Adv. Math 9:316 (1972).

    Article  MathSciNet  Google Scholar 

  70. K. Moulopoulos and N.W. Ashcroft, to be published (1994).

    Google Scholar 

  71. E. Lieb and E. Narnhofer, J. Stat. Phys. 14:465 (1976).

    Google Scholar 

  72. W. Kohn and L.J. Sham, Phys. Rev. A 140:1133 (1965).

    MathSciNet  ADS  Google Scholar 

  73. N.W. Ashcroft (to appear).

    Google Scholar 

  74. Translations of Clausius’ papers (for example, Annalen der Physik: (Serial 2) 100:353 (1857), are given by S.G. Brush, “Kinetic Theory,” Pergamon, New York (1965).

    Google Scholar 

  75. The quotations in Appendix C are taken from S.G. Brush, “Statistical Physics and the Atomic Theory of Matter from Boyle and Newton to Landau and Onsager,” Princeton University Press, Princeton (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ashcroft, N.W. (1995). Inhomogeneous Fluids and the Freezing Transition. In: Gross, E.K.U., Dreizler, R.M. (eds) Density Functional Theory. NATO ASI Series, vol 337. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9975-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9975-0_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9977-4

  • Online ISBN: 978-1-4757-9975-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics