Skip to main content

Speculations on the Molecular Mechanisms Underlying Dopamine Agonist-Induced Dyskinesias in Parkinsonism

  • Chapter
The Basal Ganglia V

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 47))

  • 104 Accesses

Abstract

Long-term treatment of Parkinson’s disease with dopamine-replacing agents fre-quently results in the appearance of debilitating dyskinetic side-effects. The neural mechanisms underlying these so-called dopamine agonist-induced dyskinesias remain unclear. This chapter summarises some of our recent molecular data, obtained in the 6-hydroxydopaminelesioned rat model of Parkinson’s disease, that suggest a role for both enkephalin and dynorphin in the generation of the symptoms of dopamine agonist-induced dyskinesias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albin, R.L., Young, A.B. and Penney J.B., 1989, The functional anatomy of basal ganglia disorders, Trends Neurosci. 12: 366–375.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, G.E., DeLong, M.R. and Strick, P.L., 1986, Parallel organisation of functionally-segregated circuits linking basal ganglia and cortex, Ann. Rev. Neurosci. 9: 357–381.

    Article  PubMed  CAS  Google Scholar 

  • Angulo, J.A., 1992, Involvement of dopamine D1 and D2 receptors in the regulation of preproenkephalin mRNA abundance in the striatum and accumbens of the rat brain, J. Neurochem. 58: 1104–1109.

    Article  PubMed  CAS  Google Scholar 

  • Angulo, J., Davis, L., Burkhart, B. and Christoph, G., 1986, Reduction of striatal neurotransmission elevates striatal proenkephalin mRNA, Eur. J. Pharmacol. 130: 243–341.

    Article  Google Scholar 

  • Campbell, K. and Björklund, A., 1994, Prefrontal corticostriatal afferents maintain increased enkephalin gene expression in the dopamine-denervated rat striatum, Eur. J. Neurosci. 6: 1371–1383.

    Article  PubMed  CAS  Google Scholar 

  • Carroll, C.B., Holloway, V., Brotchie, J.M. and Mitchell, I.J., 1995, Neurochemical and behavioural investigations of the NMDA receptor-associated glycine site in the rat striatum: functional implications for the treatment of parkinsonian symptoms, Psychopharmacol. 119: 55–65.

    Article  CAS  Google Scholar 

  • Crossman, A.R., 1990, A hypothesis on the pathophysiological mechanisms that underlie levodopa-or dopamine agonist-induced dyskinesia in Parkinson’s disease: implications for future strategies in treatment, Mov. Dis. 5: 100–108.

    Article  CAS  Google Scholar 

  • Del Fiacco, M., Paxinos, G. and Levanti, M.C., 1982, Neostriatal enkephalin immunoreactive neurons project to the globus pallidus, Brain Res. 231: 1–17.

    Article  PubMed  Google Scholar 

  • Douglass, J., McKinzie, A.A. and Pollock, K.M., 1994, Identification of multiple DNA elements regulating basal and protein kinase A-regulated transcriptional expression of the rat prodynorphin gene, Mol. Endocrinol. 8: 333–344.

    Article  PubMed  CAS  Google Scholar 

  • Engber, T.M., Susel, Z., Kuo, S., Gerfen, C.R. and Chase, T.N., 1991, Levodopa replacement therapy alters enzyme activities in striatum and neuropeptide content in striatal output regions of 6-hydroxy-dopamine lesioned rats, Brain Res. 552: 113–118.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen, C.G. and Young III, W.S., 1988, Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridisation histochemistry and fluorescent retrograde tracing study, Brain Res. 460: 161–167.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen, C.R., Engber, T.M., Mahan, L.C., Susel, Z., Chase, T.N., Monsma Jr., F.J. and Sibley, D.R., 1990, D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons, Science 250: 1429–1432.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen, C.R., McGinty, J.F. and Young III, W.S., 1991, Dopamine differentially regulates dynorphin, substance P and enkephalin expression in striatal neurons: In situ hybridisation histochemical analysis, J. Neurosci. 11: 1016–1031.

    PubMed  CAS  Google Scholar 

  • Gomez-Mancilla, B. and Bedard, P.J., 1993, Effect of nondopaminergic drugs on L-DOPA-induced dyskinesias in MPTP-treated monkeys, Clin. Neuropharmacol. 16: 418–427.

    Article  PubMed  CAS  Google Scholar 

  • Graybiel, A.M., 1990, Neurotransmitters and neuromodulators in the basal ganglia, Trends Neurosci. 13: 244–254.

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre, J.T., 1993, Glutamate-dopamine interactions in the basal ganglia: relationship to Parkinson’s disease, J. Neurotransm. 91: 255–269.

    CAS  Google Scholar 

  • Hammond, C., Feger, J., Biolac, B. and Souteyrend, J.P., 1979, Experimental hemiballismus produced by unilateral kainic acid lesion in the corpus Luysii, Brain Res. 171: 577–580.

    Article  PubMed  CAS  Google Scholar 

  • Hervé, D., Trovero, F., Blanc, G., Thierry, A.M., Glowinski, J., Tassin, J.-P., 1989, Nondopaminergic prefrontocortical efferent fibres modulate D1 receptor denervation supersensitivity in specific regions of the rat striatum, J. Neurosci. 9: 3699–3708.

    PubMed  Google Scholar 

  • Hossain, M.H. and Weiner, N., 1993, Dopaminergic functional supersensitivity: effects of chronic L-Dopa and carbidopa treatment in an animal model of Parkinson’s disease, J. Pharmacol. Exp. Ther. 267: 1105–1111.

    PubMed  CAS  Google Scholar 

  • Jiang, H.K., McGinty, J.F. and Hong, J.S., 1990, Differential modulation of strionigral dynorphin and enkephalin by dopamine receptor subtypes, Brain Res. 507: 57–64.

    Article  PubMed  CAS  Google Scholar 

  • Jongen-Rêlo, A.L., Docter, G.J., Jonker, A.J., Vreugdenhil, E., Groenewegen, H.J. and Voorn, P., 1994, Differential effects of dopamine depletion on the binding and mRNA levels of dopamine receptors in the shell and core of the rat nucleus accumbens, Mol. Brain Res. 25: 333–343.

    Article  PubMed  Google Scholar 

  • Kelley, A.E. and Domesick, V.B., 1982, The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde and retrograde horseradish peroxidase study, Neuroscience 7: 2321–2325.

    Article  PubMed  CAS  Google Scholar 

  • Kowlaski, C. and Giraud, P., 1993, Dopamine decreases striatal enkephalin turnover and proenkephalin messenger RNA abundance via D2 receptor activation in primary cell cultures, Neuroscience 53: 665–672.

    Article  Google Scholar 

  • Kunzle, H., 1975, Bilateral projections from the precentrai motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis, Brain Res. 88: 195–209.

    Article  PubMed  CAS  Google Scholar 

  • Kunzle, H., 1977, Projections from the primary somatosensory cortex to the basal ganglia and thalamus in the monkey, Exp. Brain Res. 30: 481–492.

    Article  PubMed  CAS  Google Scholar 

  • Le Moine, C., Normand, E., Guitteny, A.F., Fouque, B., Teoule, R. and Bloch, B., 1990, Dopamine receptor gene expression by enkephalin neurons in rat forebrain, Proc. Natl. Acad. Sci. USA 87: 230–234.

    Article  PubMed  Google Scholar 

  • Li, S.J., Jiang, H.K., Stachowiak, M.S., Hudson P.M, Owyang V., Nanry K., Tilson, H.A. and Hong, J.S., 1990, Influence of nigrostriatal dopaminergic tone on the biosynthesis of dynorphin and enkephalin in rat striatum, Mol. Brain Res. 8: 219–225.

    Article  PubMed  CAS  Google Scholar 

  • Llorens-Cortes, C., Van Amsterdam, J.G.C., Giros, B., Qauch, T.T. and Schwarz, J.C., 1990, Enkephalin biosynthesis and release in mouse striatum are inhibited by GABA receptor stimulation: compared changes in preproenkephalin mRNA and Tyr-Gly-Gly levels, Mol. Brain Res. 8: 227–233.

    Article  PubMed  CAS  Google Scholar 

  • Maneuf, Y.P., Mitchell, I.J., Crossman, A.R. and Brotchie, J.M., 1994, On the role of enkephalin in the GABAergic striatal efferents to the globus pallidus, Exp. Neurol. 125: 65–71.

    Article  PubMed  CAS  Google Scholar 

  • Maneuf, Y.P., Mitchell, I.J., Crossman, A.R., Woodruff, G.N. and Brotchie, J.M., 1995, Functional implications of kappa opioid receptor-mediated modulation of glutamate transmission in the output regions of the basal ganglia in rodent and primate models of Parkinson’s disease, Brain Res. 683: 102–108.

    Article  PubMed  CAS  Google Scholar 

  • Marsden, C.D. and Parkes, J.D., 1977, Success and problems of long term therapy in Parkinson’s disease, Lancet I: 345–349.

    Article  Google Scholar 

  • Martin, J.P., 1927, Hemichorea resulting from a local lesion of the brain (syndrome of body of Luys), Brain 50:637–651.

    Article  Google Scholar 

  • Mishra, R.M., Marshall, A.M. and Varmuza, S.L., 1980, Supersensitivity in rat caudate nucleus: effects of 6-hydroxydopamine on the time course of dopamine receptor and cyclic AMP changes, Brain Res. 200: 47–57.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, I.J., Jackson, A., Sambrook, M.A. and Crossman, A.R., 1985, Common neural mechanisms in experimental chorea and hemiballismus in the monkey. Evidence from 2-deoxyglucose autoradiography, Brain Res. 339: 346–350.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, I.J., Clarke, C.E., Boyce, S., Robertson, R.G., Peggs, D., Sambrook, M.A. and Crossman, A.R., 1989a, Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, Neuroscience 32: 213–226.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, I.J., Jackson, A., Sambrook, M.A. and Crossman, A.R., 1989b, The role of the subthalamic nucleus in experimental chorea: evidence from 2-deoxyglucose autoradiography, Brain 112: 1533–1548.

    Article  PubMed  Google Scholar 

  • Mitchell, I.J., Crossman, A.R., Liminga, U., Andren, P. and Gunne, L.M., 1992a, Regional changes in 2-deoxyglucose uptake associated with neuroleptic-induced tardive dyskinesia in the cebus monkey, Movement Dis.7: 32–37.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, I.J., Boyce, S., Sambrook, M.A. and Crossman, A.R., 1992b, A 2-deoxyglucose study of the effects of dopamine agonists on the parkinsonian primate brain: implications for the neural mechanisms that mediate dopamine agonist-induced dyskinesia, Brain 115: 809–824.

    Article  PubMed  Google Scholar 

  • Morris, B.J., Höllt, V. and Herz, A., 1988, Dopaminergic regulation of striatal proenkephalin mRNA and prodynorphin mRNA: contrasting effects of D1 and D2 antagonists, Neuroscience 25: 525–532.

    Article  PubMed  CAS  Google Scholar 

  • Normand, E., Popovici, T., Onteniente, B., Fellmann, D., Piatier-Tonneau, D., Auffray, C., and Bloch, B., 1988, Dopaminergic neurons of the substantia nigra modulate preproenkephalin A gene expression in rat striatal neurons, Brain Res. 439: 39–46.

    Article  PubMed  CAS  Google Scholar 

  • Onali, P., Olianas, M.C. and Gessa, G.L., 1985, Characterisation of dopamine receptors mediating inhibition of adenylate cyclase activity in rat striatimi, Mol. Pharmacol. 28: 138–145.

    PubMed  CAS  Google Scholar 

  • Parent, A. and Hazrati, L.-N., 1995, Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-tha-lamo-cortical loop, Brain Res. Rev. 20: 91–127.

    Article  PubMed  CAS  Google Scholar 

  • Paxinos, G. and Watson, C., 1985, The Rat Brain in Stereotaxic Coordinates, Academic Press, New York.

    Google Scholar 

  • Pollack, A.E. and Wooten, G.F., 1992, Differential regulation of striatal preproenkephalin mRNA by D1 and D2 dopamine receptors, Mol. Brain Res. 12: 111–119.

    Article  PubMed  CAS  Google Scholar 

  • Penney, J.B. and Young, A.B., 1986, Striatal inhomogeneities and basal ganglia function, Movement Dis. 1: 3–15.

    Article  PubMed  Google Scholar 

  • Robertson, R.G., Farmery, S.M., Sambrook, M.A. and Crossman, A.R., 1989, Dyskinesia in the primate following injection of an excitatory amino-acid antagonist into the medial pallidal segment of the globus pallidus, Brain Res. 416: 317–322.

    Article  Google Scholar 

  • Schiffmann, S.N. and Vanderhaeghen, J.J., 1993, Adenosine A2 receptors regulate the gene expression of striopallidal and strionigral neurons, J. Neurosci. 13: 1080–1087.

    PubMed  CAS  Google Scholar 

  • Sivam, S.P. and Hong, J.-S., 1986, GABAergic regulation of enkephalin in rat striatum: alterations in met5-enkephalin level, precursor content and preproenkephalin messenger RNA abundance, J. Pharmacol. Exp. Ther. 237: 326–331.

    PubMed  CAS  Google Scholar 

  • Somers, D.L. and Beckstead, R.M., 1992, N-Methyl-D-Aspartate receptor antagonism alters substance P and met5-enkephalin biosynthesis in neurons of the rat striatum, J. Pharmacol. Exp. Ther. 262: 823–833.

    PubMed  CAS  Google Scholar 

  • Stoof, J.C. and Kebabian, J.W., 1981, Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum, Nature 294: 366–368.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, K.L., Rose, S., Jenner, P., Marsden, C.D., 1992, Dissociation of the striatal D-2 dopamine receptor from adenylyl cyclase following 6-hydroxydopamine-induced denervation, Biochem. Pharmacol. 44: 73–82.

    Article  PubMed  CAS  Google Scholar 

  • Trabucchi, M., Bassi, S. and Frattola, L., 1982, Effect of naloxone on the’ On-Off syndrome in patients receiving long-term levodopa therapy, Arch. Neurol. 39: 120–121.

    Article  PubMed  CAS  Google Scholar 

  • Uhl, G.R., Navia, B. and Douglass, J., 1988, Differential expression of preproenkephalin and preprodynorphin mRNAs in striatal neurons: High levels of preproenkephalin expression depend on cortical afferents, J. Neurosci. 8: 4755–4764.

    PubMed  CAS  Google Scholar 

  • Vincent, S.R., Hökfelt, T., Christensson, I. and Terenius, L., 1982, Immunohistochemical evidence for a dynorphin immunoreactive strionigral pathway, Eur. J. Pharmacol. 85: 251–252.

    Article  PubMed  CAS  Google Scholar 

  • Voorn, P., Docter, G.J., Jongen-Rêlo, A.L. and Jonker, A.J., 1994, Rostrocaudal sub-regional differences in the response of enkephalin, dynorphin and substance P synthesis in rat nucleus accumbens to dopamine depletion, Eur. J. Neurosci. 486-496.

    Google Scholar 

  • Young III, W.S., Bonner, T.I. and Brann, M.R., 1986, Mesencephalic dopamine neurons regulate the expression of neuropeptide mRNAs in the rat forebrain, Proc. Natl. Acad. Sci. USA 83: 9827–9831.

    Article  PubMed  CAS  Google Scholar 

  • Zahm, D.S. and Brog, J.S., 1992, On the significance of subterritories in the ‘accumbens’ part of the ventral striatum, Neuroscience 50: 751–767.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Duty, S., Henry, B., Crossman, A.R., Brotchie, J.M. (1996). Speculations on the Molecular Mechanisms Underlying Dopamine Agonist-Induced Dyskinesias in Parkinsonism. In: Ohye, C., Kimura, M., McKenzie, J.S. (eds) The Basal Ganglia V. Advances in Behavioral Biology, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0194-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0194-1_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0196-5

  • Online ISBN: 978-1-4899-0194-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics