Skip to main content

AIDS Dementia as a Form of Excitotoxicity: Potential Therapy with NMDA Open-Channel Blockers and Redox Congeners of Nitric Oxide

  • Chapter
Neurodegenerative Diseases

Abstract

The neurological manifestations of AIDS include dementia, encountered even in the absence of opportunistic superinfection or malignancy. The AIDS Dementia Complex appears to be associated with several neuropathological abnormalities, including astrogliosis and neuronal injury or loss. How can HIV-1 result in neuronal damage if neurons themselves are only rarely, if ever, infected by the virus? In vitro experiments from several different laboratories have lent support to the existence of HIV- and immune-related toxins. In one recently defined pathway to neuronal injury, HIV-infected macrophages/microglia as well as macrophages activated by HIV-1 envelope protein gp120 appear to secrete excitants/neurotoxins. These substances may include arachidonic acid, platelet-activating factor, free radicals (NO· and O2·), glutamate, quinolinate, cysteine, cytokines (TNF-α, IL1-β, IL-6), and as yet unidentified factors emanating from stimulated macrophages and possibly reactive astrocytes. A final common pathway for neuronal susceptibility appears to be operative, similar to that observed in stroke, trauma, epilepsy, and several neurodegenerative diseases, including Huntington’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. This mechanism involves excessive activation of N-methyl-d-aspartate (NMDA) receptor-operated channels, with resultant excessive influx of Ca2+ leading to neuronal damage, and thus offers hope for future pharmacological intervention.

This chapter reviews two clinically-tolerated NMDA antagonists, memantine and nitroglycerin: (i) Memantine is an open-channel blocker of the NMDA-associated ion channel and a close congener of the anti-viral and anti-parkinsonian drug amantadine. Memantine blocks the effects of escalating levels of excitotoxins to a greater degree than lower (physiological) levels of these excitatory amino acids, thus sparing to some extent normal neuronal function, (ii) Nitroglycerin acts at a redox modulatory site of the NMDA receptor/channel complex to downregulate its activity. The neuroprotective action of nitroglycerin at this site is mediated by a chemical species related to nitric oxide, but in a higher oxidation state, resulting in transfer of an NO group to a critical cysteine on the NMDA receptor. Because of the clinical safety of these drugs, they have the potential for trials in humans. As the structural basis for redox modulation is further elucidated, it may become possible to design even better redox reactive reagents of clinical value.

To this end, redox modulatory sites of NMDA receptors have begun to be characterized at a molecular level using site-directed mutagenesis of recombinant subunits (NMDAR1, NMDAR2A-D). Two types of redox modulation can be distinguished. The first type gives rise to a persistent change in the functional activity of the receptor, and we have identified two cy steine residues on the NMDAR1 subunit (#744 and #798) that are responsible for this action. A second site, presumably also a cysteine(s) because ≤ mM N-ethylmaleimide can block its effect in native neurons, underlies the other, more transient redox action. It appears to be at this, as yet unidentified, site on the NMDA receptor that the NO group acts, at least in recombinant receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Bacellar, A. Muñoz, E.N. Miller, B.A. Cohen, D. Besley, O.A. Seines, J.T. Becker, and J.C. McArthur, Temporal trends in the incidence of HIV-1-related neurologic diseases: multicenter AIDS cohort study, 1985–1992, Neurology 44:1892–1900 (1994).

    Article  PubMed  CAS  Google Scholar 

  2. S.A. Lipton, Neurobiology: HIV displays its coat of arms, Nature 367:113–114 (1994).

    Article  PubMed  CAS  Google Scholar 

  3. R.W. Price, B. Brew, J. Sidtis, M. Rosenblum, A.C. Scheck, and P. Clearly, The brain and AIDS: central nervous system HIV-1 infection and AIDS dementia complex, Science 239:586–92 (1988).

    Article  PubMed  CAS  Google Scholar 

  4. H. Budka, Neuropathology of human immunodeficiency virus infection, Brain Pathology 1:163–175 (1991).

    Article  PubMed  CAS  Google Scholar 

  5. S. Ketzler, S. Weis, H. Haug, and H. Budka, Loss of neurons in frontal cortex in AIDS brains, Acta Neuropathol (Berlin) 80:90–92 (1990).

    Article  Google Scholar 

  6. IP. Everall, P.J. Luthbert, and P.L. Lantos, Neuronal loss in the frontal cortex in HIV infection, Lancet 337:1119–21 (1991).

    Article  PubMed  CAS  Google Scholar 

  7. CA. Wiley, E. Masliah, M. Morey, C. Lemere, R.M. DeTeresa, M.R. Grafe, L.A. Hansen, and R.D. Terry, Neocortical damage during HIV infection, Ann Nenrol 29:651–7 (1991).

    Article  CAS  Google Scholar 

  8. E. Masliah, C.L. Achim, N. Ge, R. DeTeresa, R.D. Terry, and C.A. Wiley, Spectrum of human immunodeficiency virus-associated neocortical damage, Ann Nenrol 32:321–9 (1992).

    Article  CAS  Google Scholar 

  9. W.N. Tenhula, S.Z. Xu, M.C. Madigan, K. Heller, W.R. Freeman, and A.A. Sadun, Morphometric comparisons of optic nerve axon loss in acquired immunodeficiency syndrome, Am J Ophthalmol 113:14–20 (1992).

    PubMed  CAS  Google Scholar 

  10. D. Seilhean, C. Duyckaerts, R. Vazuex, F. Bolgert, P. Brunet, C. Katlama, M. Gentilini, and J.-J. Hauw, HIV-1-associated cognitive/motor complex: Absence of neuronal loss in the cerebral neocortex, Neurology 43:1492–1499 (1993).

    Article  PubMed  CAS  Google Scholar 

  11. S. Koenig, H.E. Gendelman, J.M. Orenstein, M.C. Dal Canto, G.H. Pozeshkpour, M. Yungbluth, F. Janotta, A. Kasmit, M.A. Martin, and A.S. Fauci, Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy, Science 233:1089–1093 (1986).

    Article  PubMed  CAS  Google Scholar 

  12. T. Saito, L.R. Sarer, L.G. Epstein, J. Michales, M. Mintz, M. Louder, K. Goldring, T.A. Cvetkovich, and B.M. Blumberg, Overexpression of nef as a marker for restricted HIV-1 infection of astrocytes in postmortem pediatric central nervous tissues, Neurology 44:474–481 (1994).

    Article  PubMed  CAS  Google Scholar 

  13. C. Tornatore, R. Chandra, J.R. Berger, and E.O. Major, HIV-1 infection of subcortical astrocytes in the pediatric central nervous system, Neurology 44:481–487 (1994).

    Article  PubMed  CAS  Google Scholar 

  14. D.E. Brenneman, G.L. Westbrook, S.P. Fitzgerald, D.L. Ennist, K.L. Elkins, M. Ruff, and C.B. Pert, Neuronal cell killing by the envelope protein of HIV and its prevention by vasoactive intestinal peptide, Nature 335:639–42 (1988).

    Article  PubMed  CAS  Google Scholar 

  15. E.B. Dreyer, P.K. Kaiser, J.T. Offermann, and S.A. Lipton, HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists, Science 248:364–7 (1990).

    Article  PubMed  CAS  Google Scholar 

  16. E.B. Dreyer and S.A. Lipton, Toxic neuronal effects of the HIV coat protein gp120 may be mediated through macrophage arachidonic acid, Soc Neurosci Abstr 20:1049 (1994).

    Google Scholar 

  17. L.M. Wahl, M.L. Corcoran, S.W. Pyle, L.O. Arthur, A. Harel-Bellan, and W.L. Farrar, Human immunodeficiency virus glycoprotein (gp120) induction of monocyte arachidonic acid metabolites and interleukin 1, Proc Natl Acad Sci USA 86:621–5 (1989).

    Article  PubMed  CAS  Google Scholar 

  18. M.P. Heyes, BJ. Brew, A. Martin, R.W. Price, A.M. Salazqr, J.J. Sidtis, J.A. Yergey, M.M. Mouradian, A. Sadler, J. Keilp, D. Rubinow, and S.P. Markey, Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status, Ann Neurol 29:202–9 (1991).

    Article  PubMed  CAS  Google Scholar 

  19. P. Genis, M. Jett, E.W. Bernton, T. Boyle, H.A. Gelbard, K. Dzenko, R.W. Keane, L. Resnick, T. Mizrachi, D.J. Volsky, L.G. Epstein, and H.E. Gendelman, Cytokines and arachidonic acid metabolites produced during human immunodeficiency virus (HIV)-infected macrophage-astroglia interactions: implications for the neuropathogenesis of HIV disease, J Exp Med 176:1703–18 (1992).

    Article  PubMed  CAS  Google Scholar 

  20. M. Hayman, G. Arbuthnott, G. Harkiss, H. Brace, P. Filippi, V. Philippon, D. Thompson, R. Vigne, and A. Wright, Neurotoxicity of peptide analogies of the transactivating protein tat from Maedi-Visna virus and human immunodeficiency virus, Neuroscience 53:1–6 (1993).

    Article  PubMed  CAS  Google Scholar 

  21. S.M. Toggas, E. Masliah, E.M. Rockenstein, G.F. Rall, C.R. Abraham, and L. Mucke, Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice, Nature 367:188–193 (1994).

    Article  PubMed  CAS  Google Scholar 

  22. S.A. Lipton and P.A. Rosenberg, Excitatory amino acids as a final common pathway for neurologic disorders, N Engl J Med 330:613–622 (1994).

    Article  PubMed  CAS  Google Scholar 

  23. H.A. Gelbard, H.S.L.M. Nottet, S. Swindells, M. Jett, K.A. Dzenko, P. Genis, R White, L. Wang, Y.-B. Choi, D. Zhang, S.A. Lipton, W.W. Tourtellotte, L.G. Epstein, and H.E. Gendelman, Platelet-activating factor: a candidate human immunodeficiency virus type 1-induced neurotoxin, J Virol 68:4628–4635 (1994).

    PubMed  CAS  Google Scholar 

  24. M.I. Bukrinsky, H.S.L.M. Nottet, H. Schmidtmayerova, L. Dubrovsky, C.R. Flanagan, M.E. Mullins, S.A. Lipton, and H.E. Gendelman, Regulation of nitric oxide synthase activity in human immunodeficiency virus type 1 (HIV-l)-infected monocytes: Implications for HIV-associated neurological disease, J Exp Med 181:735–745 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. M.W. Yeh, H.L.M. Nottet, H.E. Gendelman, and S.A. Lipton, HIV-1 coat protein gp120 stimulates human macrophages to release L-cysteine, an NMDA agonist, Soc Neurosci Abstr 20:451 (1994).

    Google Scholar 

  26. T.-M. Lo, C.J. Fallert, T.M. Piser, and S.A. Thayer, HIV-1 envelope protein evokes intracellular calcium oscillations in rat hippocampal neurons, Brain Res 594:189–196 (1992).

    Article  PubMed  CAS  Google Scholar 

  27. S.A. Lipton, Models of neuronal injury in AIDS: another role for the NMDA receptor?, Trends Neurosci 15:75–79 (1992).

    Article  PubMed  CAS  Google Scholar 

  28. W.R. Tyor, J.D. Glass, J.W. Griffin, S. Becker, J.C. McArthur, L. Bezman, and D.E. Griffin, Cytokine expression in the brain during the acquired immunodeficiency syndrome, Ann Nenrol 31:349–60 (1992).

    Article  CAS  Google Scholar 

  29. S.L. Wesselingh, C. Power, J.D. Glass, W.R. Tyor, J.C. McArthur, J.M. Farber, J.W. Griffin, and D.E. Griffin, Intracerebral cytokine messenger RNA expression in acquired immunodeficiency syndrome dementia, Ann Neurol 33:576–582 (1993).

    Article  PubMed  CAS  Google Scholar 

  30. D.E. Griffin, S.L. Wesselingh, and J.C. McArthur, Elevated central nervous system protaglandins in human immunodeficiency virus-associated dementia, Ann Neurol 35:592–597 (1994).

    Article  PubMed  CAS  Google Scholar 

  31. D. Giulian, K. Vaca, and C.A. Noonan, Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1, Science 250:1593–6 (1990).

    Article  PubMed  CAS  Google Scholar 

  32. L. Pulliam, B.G. Herndler, N.M. Tang, and M.S. McGrath, Human immunodeficiency virus-infected macrophages produce soluble factors that cause histological and neurochemical alterations in cultured human brains, J Clin Invest 87:503–12 (1991).

    Article  PubMed  CAS  Google Scholar 

  33. H.S.L.M. Nottet, M. Jett, Q.-H. Zhai, C.R. Flanagan, A. Rizzino, P. Genis, T. Baldwin, J. Schwartz, and H.E. Gendelman, A regulatory role for astrocytes in HIV-encephalitis: an overexpression of eicosanoids, platelet-activating factor and tumor necrosis factor-a by activated HIV-1-infected monocytes is attenuated by primary human astrocytes, J Immunol, in press.

    Google Scholar 

  34. K.N. Selmaj, M. Farooq, T. Norton, C.S. Raine, and C.F. Brosman, Proliferation of astrocytes in vitro in response to cytokines, J Immunol 144:129–35 (1990).

    PubMed  CAS  Google Scholar 

  35. F.H. Valone and L.B. Epstein, Biphasic platelet-activating factor synthesis by human monocytes stimulated with IL-β, tumor necrosis factor, or IFN-γ, J Immunol 141:3945–50 (1988).

    PubMed  CAS  Google Scholar 

  36. M.P. Heyes, K. Saito, and S.P. Markey, Human macrophages convert L-tryptophan to the neurotoxin quinolinic acid, Biochem J 283:633–5 (1992).

    PubMed  CAS  Google Scholar 

  37. B. Soliven and J. Albert, Tumor necrosis factor modulates Ca2+ currents in cultured sympathetic neurons, J Neurosci 12:2665–71 (1992).

    PubMed  CAS  Google Scholar 

  38. M.L. Simmons and S. Murphy, Cytokines regulate L-arginine-dependent cyclic GMP production in rat glial cells, Eur J Neurosci 5:825–831 (1993).

    Article  PubMed  CAS  Google Scholar 

  39. S.A. Lipton, P.K. Kaiser, N.J. Sucher, E.B. Dreyer, and J.T. Offermann, AIDS virus coat protein sensitizes neurons to NMDA receptor-mediated toxicity, Soc Neurosci Abstr 16:289 (1990).

    Google Scholar 

  40. S.A. Lipton, N.J. Sucher, P.K. Kaiser, and E.B. Dreyer, Synergistic effects of HIV coat protein and NMDA receptor-mediated neurotoxicity, Neuron 7:111–8 (1991).

    Article  PubMed  CAS  Google Scholar 

  41. S.A. Lipton, Calcium channel antagonists in the prevention of neurotoxicity, Adv Pharmacol 22:271–91 (1991).

    Article  PubMed  CAS  Google Scholar 

  42. S.A. Lipton and H.E. Gendelman, The dementia associated with the acquired immunodeficiency syndrome, N Engl J Med 332:934–40 (1995).

    Article  PubMed  CAS  Google Scholar 

  43. S.A. Lipton, Requirement for macrophages in neuronal injury induced by HIV envelope protein gp120, NeuroReport 3:913–5 (1992).

    Article  PubMed  CAS  Google Scholar 

  44. D. Giulian, E. Wendt, K. Vaca, and C.A. Noonan, The envelope glycoprotein of human immunodeficiency virus type 1 stimulates release of neurotoxins from monocytes, Proc Natl Acad Sci USA 90:2769–2773 (1993).

    Article  PubMed  CAS  Google Scholar 

  45. D.E. Brenneman, T. Nicol, D. Warren, and L.M. Bowers, Vasoactive intestinal peptide: a neurotrophic releasing agent and an astroglial mitogen, J Neurosci Res 25:386–94 (1990).

    Article  PubMed  CAS  Google Scholar 

  46. D.J. Benos, B.H. Hahn, J.K. Bubien, S.K. Ghosh, N.A. Mashburn, M.A. Chaikin, G.M. Shaw, and E.N. Benveniste, Envelope glycoprotein gp120 of human immunodeficiency virus type 1 alters ion transport in astrocytes: Implications for AIDS dementia complex, Proc Natl Acad Sci USA 91:494–498 (1994).

    Article  PubMed  CAS  Google Scholar 

  47. B. Barbour, M. Szatkowski, N. Ingledew, and D. Attwell, Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells, Nature 342:918–20 (1989).

    Article  PubMed  CAS  Google Scholar 

  48. A. Volterra, D. Trotti, P. Cassutti, C. Tromba, A. Salvaggio, R.C. Melcangi, and G. Racagni, High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cortical synaptosomes and astrocytes, J Neurochem 59:600–6 (1992).

    Article  PubMed  CAS  Google Scholar 

  49. V.L. Dawson, T.M. Dawson, G.R. Uhl, and S.H. Snyder, Human immunodeficiency virus-1 coat protein neurotoxicity mediated by nitric oxide in primary cortical cultures, Proc Natl Acad Sci USA 90:3256–3259 (1993).

    Article  PubMed  CAS  Google Scholar 

  50. B. Miller, M. Sarantis, S.F. Traynelis, and D. Attwell, Potentiation of NMDA receptor currents by arachidonic acid, Nature 355:722–5 (1992).

    Article  PubMed  CAS  Google Scholar 

  51. J.W. Olney, C. Zorumski, M.T. Price, and J. Labryuere, L-cysteine, a bicarbonate-sensitive endogenous excitotoxin, Science 248:596–9 (1990).

    Article  PubMed  CAS  Google Scholar 

  52. S.A. Lipton, Y.-B. Choi, Z.-H. Pan, S.Z. Lei, H.-S.V. Chen, N.J. Sucher, J. Loscalzo, D.J. Singel, and J.S. Stamler, A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds, Nature 364:626–632 (1993).

    Article  PubMed  CAS  Google Scholar 

  53. T. Savio and G. Levi, Neurotoxicity of HIV coat protein gp120, NMDA receptors, and protein kinase C: a study with rat cerebellar granule cell cultures, J Neurosci Res 34:265–272 (1993).

    Article  PubMed  CAS  Google Scholar 

  54. S.Z. Lei, D. Zhang, A.E. Abele, and S.A. Lipton, Blockade of NMDA receptormediated mobilization of intracellular Ca2+ prevents neurotoxicity, Brain Res 598:196–202 (1992).

    Article  PubMed  CAS  Google Scholar 

  55. S.A. Lipton, Prospects for clinically tolerated NMDA antagonists: open-channel blockers and alternative redox states of nitric oxide, Trends Neurosci 16:527–532 (1993).

    Article  PubMed  CAS  Google Scholar 

  56. S.A. Lipton, Memantine prevents HIV coat protein-induced neuronal injury in vitro, Neurology 42:1403–5 (1992).

    Article  CAS  Google Scholar 

  57. W.E.G. Müller, H.C. Schröder, H. Ushijima, J. Dapper, and J. Bormann, gp120 of HIV-1 induces apoptosis in rat cortical cell cultures: prevention by memantine, Eur J Pharmacol — Molec Pharm Sect 226:209–214 (1992).

    Article  Google Scholar 

  58. S.A. Lipton, 7-Chlorokynurenate ameliorates neuronal injury mediated by HIV envelope protein gp120 in retinal cultures, Eur J Neurosci 4:1411–1415 (1992).

    Article  PubMed  Google Scholar 

  59. S.A. Lipton, Human immunodeficiency virus-infected macrophages, gp120, and N-methyl-D-aspartate receptor-mediated neurotoxicity, Ann Neurol 33:227–228 (1993).

    Article  PubMed  CAS  Google Scholar 

  60. H.-S.V. Chen, J.W. Pellegrini, S.K. Aggarwal, S.Z. Lei, S. Warach, F.E. Jensen, and S.A. Lipton, Open-channel block of NMDA responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity, J Neurosci 12:4427–36 (1992).

    PubMed  CAS  Google Scholar 

  61. S.A. Lipton and F.E. Jensen, Memantine, a clinically-tolerated NMDA open-channel blocker, prevents HIV coat protein-induced neuronal injury in vitro and in vivo, Soc Neurosci Abstr 18:757 (1992).

    Google Scholar 

  62. S.Z. Lei, Z.-H. Pan, S.K. Aggarwal, H.-S.V. Chen, J. Hartman, N.J. Sucher, and S.A. Lipton, Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex, Neuron 8:1087–99 (1992).

    Article  PubMed  CAS  Google Scholar 

  63. D.E. Murphy, A.J. Hutchison, S.D. Hurt, M. Williams, and M.A. Sills, Characterization of the binding of [3H]CGS-19755: a novel N-methyl-D-aspartate antagonist with nanomolar affinity in rat brain, Br J Pharmacol 95:932–938 (1988).

    Article  PubMed  CAS  Google Scholar 

  64. J.W. Johnson and P. Ascher, Glycine potentiates the NMDA response in cultured mouse brain neurons, Nature 325:529–31 (1987).

    Article  PubMed  CAS  Google Scholar 

  65. N.W. Kleckner and R. Dingledine, Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes, Science 241:835–7 (1988).

    Article  PubMed  CAS  Google Scholar 

  66. J.A. Kemp, A.C. Foster, P.D. Leeson, T. Priestley, R. Tridgett, L.L. Iversen, and G.N. Woodruff, 7-Chlorokynurenic acid is a selective antagonist at the glycine modulatory site of the N-methyl-D-aspartate receptor complex, Proc Natl Acad Sci USA 85:6547–50 (1988).

    Article  PubMed  CAS  Google Scholar 

  67. F. Moroni, A. Marina, L. Facci, E. Fadda, S.D. Skaper, A. Galli, G. Lombardi, F. Mori, M. Ciuffi, B. Natalini, and R. Pellicciari, Thiokynurenates prevent excitotoxic neuronal death in vitro and in vivo by acting as glycine antagonists and as inhibitors of lipid peroxidation, Eur J Pharmacol 218:145–151 (1992).

    Article  PubMed  CAS  Google Scholar 

  68. C. Tang, M. Dichter, and M. Morad, Modulation of the N-methyl-D-asparate channel by extracellular H+, Proc Natl Acad Sci USA 87:6445–6449 (1990).

    Article  PubMed  CAS  Google Scholar 

  69. S.F. Traynelis and S.G. Cull-Candy, Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons, Nature 345:347–350 (1990).

    Article  PubMed  CAS  Google Scholar 

  70. L.J. Vyklicky, V. Vlachova, and J. Krusek, The effect of external pH changes on responses to excitatory amino acids in mouse hippocampal neurones, J Physiol (Lond) 430:497–517 (1990).

    CAS  Google Scholar 

  71. R.W. Ransom and N.L. Stec, Cooperative modulation of [3H]MK-801 binding to the N-methyl-D-aspartate receptor-ion channel complex by L-glutamate, glycine, and polyamines, J Neurochem 51:830–6 (1988).

    Article  PubMed  CAS  Google Scholar 

  72. J.F. McGurk, M.V. Bennett, and R.S. Zukin, Polyamines potentiate responses of N-methyl-D-aspartate receptors expressed in xenopus oocytes, Proc Natl Acad Sci USA 87:9971–4 (1990).

    Article  PubMed  CAS  Google Scholar 

  73. K. Williams, V.L. Dawson, C. Romano, M.A. Dichter, and P.B. Molinoff, Characterization of polyamines having agonist, antagonist, and inverse agonist effects at the polyamine recognition site of the NMDA receptor, Neuron 5:199–208 (1990).

    Article  PubMed  CAS  Google Scholar 

  74. K. Williams, C. Romano, M. A. Dichter, and P.B. Molinoff, Modulation of the NMDA receptor by polyamines, Life Sci 48:469–98 (1991).

    Article  PubMed  CAS  Google Scholar 

  75. G.L. Westbrook and M.L. Mayer, Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons, Nature 328:640–3 (1987).

    Article  PubMed  CAS  Google Scholar 

  76. S. Peters, J. Koh, and D.W. Choi, Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons, Science 236:589–593 (1987).

    Article  PubMed  CAS  Google Scholar 

  77. B. Ault, R.H. Evans, A.A. Francis, D.J. Oakes, and J.C. Watkins, Selective depression of excitatory amino acid induced depolarization by magnesium ions in isolated spinal cord preparations, J Neurophysiol 32:424–442 (1980).

    Google Scholar 

  78. L. Nowak, P. Bregestovski, P. Ascher, A. Herbert, and A. Prochiantz, Magnesium gates glutamate-activated channels in mouse central neurones, Nature 307:462–5 (1984).

    Article  PubMed  CAS  Google Scholar 

  79. M.L. Mayer, G.L. Westbrook, and P.B. Guthrie, Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones, Nature 309:261–3 (1984).

    Article  PubMed  CAS  Google Scholar 

  80. J.F. MacDonald, Z. Miljkovic, and P. Pennefather, Use-dependent block of excitatory amino acid currents in cultured neurons by ketamine, J Neurophysiol 58:251–66 (1987).

    PubMed  CAS  Google Scholar 

  81. J.E. Huettner and B.P. Bean, Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels, Proc Natl Acad Sci USA 85:1307–1311 (1988).

    Article  PubMed  CAS  Google Scholar 

  82. J. Bormann, Memantine is a potent blocker of N-methyl-D-aspartate (NMDA) receptor channels, Eur J Pharmacol 166:591–2 (1989).

    Article  PubMed  CAS  Google Scholar 

  83. J.M. Sullivan, S.F. Traynelis, H.-S.V. Chen, W. Escobar, S.F. Heinemann, and S.A. Lipton, Identification of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor, Neuron 13:929–936 (1994).

    Article  PubMed  CAS  Google Scholar 

  84. E. Aizenman, S.A. Lipton, and R.H. Loring, Selective modulation of NMDA responses by reduction and oxidation, Neuron 2:1257–63 (1989).

    Article  PubMed  CAS  Google Scholar 

  85. J.W. Lazarewicz, J.T. Wroblewski, M.E. Palmer, and E. Costa, Reduction of disulfide bonds activates NMDA sensitive glutmate receptors in primary cultures of cerebellar granule cells, Neurosci Res Commun 4:91–97 (1989).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lipton, S.A. (1996). AIDS Dementia as a Form of Excitotoxicity: Potential Therapy with NMDA Open-Channel Blockers and Redox Congeners of Nitric Oxide. In: Fiskum, G. (eds) Neurodegenerative Diseases. GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0209-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0209-2_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0211-5

  • Online ISBN: 978-1-4899-0209-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics