Skip to main content

Crystallization Kinetics

  • Chapter
Industrial Crystallization

Part of the book series: The Springer Chemical Engineering Series ((PCES))

Abstract

The essence of effective characterization of crystallization kinetics and their successful application in crystallizer design and analysis resides in the recognition that all the kinetic events are rate processes. Although several kinetic events are identifiable in a crystallizer operation, crystallization kinetics in the literature are conventionally characterized in terms of two dominant rate processes occurring in a process of crystallization from solution, namely, crystal nucleation and growth. The terms rate and rate concept need careful definitions. At the outset it is necessary to emphasize the distinction between process rate and rate of change while establishing the kinetic correlations as has been suggested in the analysis of multiphase reactor systems (see, e.g., Bisio and Kabel, 1985). The process rate, as used in crystal nucleation or growth rate, is just a concept and is always important in process analysis. One does not measure process rate directly, but only arrives at its values by some combination of measurement and theory. The rate of change follows the dictionary definition as familiar from the calculus, has derivative character, and is subject to measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bisio, A. and Kabel, R. L., Scaleup of Chemical Processes, pp. 77–116, Wiley, New York (1985).

    Google Scholar 

  • Carberry, J. J. and Kulkarni, A. A., “The non-isothermal catalytic effectiveness factor for monolith supported catalyst,” J. Catalysis 31, 41–50 (1973).

    Article  CAS  Google Scholar 

  • Carosso, P. A. and Pelizzetti, E., “A stopped-flow technique in fast precipitation kinetics—the case of barium sulphate,” J Crystal Growth 68, 532–536 (1984).

    Article  CAS  Google Scholar 

  • Evans, T. W., Margolis, G. and Sarofim, A. F., “Models of secondary nucleation attributable to crystal-crystallizer and crystal-crystal collisions,” AIChEJ. 20, 959–965 (1974).

    Article  CAS  Google Scholar 

  • Garside, J., “The concept of effectiveness factors in crystal growth,” Chem. Eng. Sci. 26, 1425–1431 (1971).

    Article  CAS  Google Scholar 

  • Garside, J., “Industrial crystallization from solution,” Chem. Eng. Sci. 40, 3–26 (1985).

    Article  CAS  Google Scholar 

  • Garside, J. and Davey, R. J., “Secondary contact nucleation: Kinetics, growth and scale-up,” Chem. Eng. Commun. 4, 393–424(1980).

    Article  CAS  Google Scholar 

  • Garside, J., Mullin, J. W. and Das, S. N., “Growth and dissolution kinetics of potassium sulphate crystals in an agitated vessel,” Ind. Eng. Chem. Fundam. 13, 299–305 (1974).

    Article  CAS  Google Scholar 

  • Garside, J. and Tavare, N. S., “Non-isothermal effectiveness factors for crystal growth,” Chem. Eng. Sci. 36, 863–866(1981).

    Article  CAS  Google Scholar 

  • Gaska, C. and Mullin, J. W., “Growth and dissolution of potassium sulfate in a fluidized bed crystallizer,” Can, J. Chem. Eng. 47, 483–489 (1969).

    Article  Google Scholar 

  • Levins, D. M. and Glastonbury, J. R., “Particle-liquid hydrodynamics and mass transfer in a stirred vessel,” Trans I. Chem. E 50, 32–41 and 132-146 (1972).

    CAS  Google Scholar 

  • Mersmann, A., “Calculation of interfacial tensions,” J. Crystal Growth 102, 841–847 (1990).

    Article  CAS  Google Scholar 

  • Ness, J. N. and White, E. T., “Collision nucleation in an agitated crystallizer,” Chem. Eng. Prog. Symp. Ser. 755(72), 64–73 (1976).

    Google Scholar 

  • Nielsen, A. E., Kinetics of Precipitation, pp 1–40, Pergamon, Oxford (1964).

    Google Scholar 

  • Nielsen, A. E., in Crystal Growth, (H. S. Peiser, Ed.), Supplement to J. Phys. Chem. Solids 28, 419–426, Pergamon, Oxford (1967).

    Google Scholar 

  • Nielsen, A. E. and Söhnel, O., “Interfacial tensions, electrolyte crystal aqueous solution, from nucleation data,” J. Crystal Growth 11, 233–242 (1971).

    Article  CAS  Google Scholar 

  • Nienow, A. W., “Agitated vessel particle-liquid mass transfer: A comparison between theories and data,” Chem. Eng. J. 9, 153–160 (1975).

    Article  CAS  Google Scholar 

  • Palwe, B. G., Chivate, M. R. and Tavare, N. S., “Growth kinetics of ammonium nitrate crystals in a draft tube baffled agitated batch crystallizer,” Ind. Eng. Chem. Proc. Des. Develop. 24, 914–919(1985).

    Article  CAS  Google Scholar 

  • Rabih, A. M., Measurement of Sucrose Crystal Growth Kinetics from Viscous Solutions, M. Sc. thesis, University of Manchester (1988).

    Google Scholar 

  • Randolph, A. D. and Rajagopal, K., “Direct measurement of crystal nucleation and growth rate kinetics in a backmixed crystal slurry: Study of the potassium sulphate system,” Ind. Eng. Chem. Fundam. 9, 165–171 (1970).

    Article  CAS  Google Scholar 

  • Randolph, A. D. and Sikdar, S. K., “Effect of soft impeller coating on the net formation of secondary nuclei,” AIChE J. 20, 410–412 (1974).

    Article  CAS  Google Scholar 

  • Randolph, A. D., Beckman, J. R. and Kraljevich, Z. I., “Crystal size distribution dynamics in a classified crystallizer: Part I, Experimental and theoretical study of cycling in a potassium chloride crystallizer,”AIChE J. 23, 500–510 (1977).

    Article  CAS  Google Scholar 

  • Shah, B. C, McCabe, W. L. and Rousseau, R. W., “Polyethylene versus stainless steel impellers for crystallization processes,” AIChEJ., 19, 194(1973).

    Article  CAS  Google Scholar 

  • Söhnel, O. and Mullin, J. W., “A method for the determination of precipitation induction periods,” J. Crystal Growth 44, 377–382 (1978).

    Article  Google Scholar 

  • Tavare, N. S., Studies in Crystallization, Ph.D. (Tech) thesis, University of Bombay (1978).

    Google Scholar 

  • Tavare, N. S., “Interfacial temperature in crystallization of potassium sulphate,” Trans. I. Chem. E. 58, 285–286 (1980).

    CAS  Google Scholar 

  • Tavare, N. S. and Chivate, M. R., “Growth rate correlation for potassium sulphate crystals in a fluidised bed crystallizer,” Chem. Eng. Sci. 33, 1290–1292 (1978).

    Article  CAS  Google Scholar 

  • Tavare, N. S. and Chivate, M. R., “Growth and dissolution kinetics of potassium sulphatecrystals in a fluidised bed crystallizer,” Trans. I. Chem. E. 57, 35–42 (1979).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tavare, N.S. (1995). Crystallization Kinetics. In: Industrial Crystallization. The Springer Chemical Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0233-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0233-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0235-1

  • Online ISBN: 978-1-4899-0233-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics