Skip to main content

Are Unoccupied Kohn-Sham Eigenvalues Related to Excitation Energies?

  • Chapter
Electronic Density Functional Theory

Abstract

In the Kohn-Sham density functional method [1,2,3,4], the true interacting-electron system is replaced by a system of non-interacting electrons in an effective potential, v eff, defined by the requirement that the density of the non-interacting electrons equals the true density. The single particle orbitals and their eigenenergies were originally introduced as a mathematical artifact in order to achieve a good approximation to the kinetic energy, leaving only a relatively small term, the exchange-correlation energy E xc, to be approximated in practical implementations of the theory. It was later shown [5] that the energy of the highest occupied orbital is in fact the negative of the ionization energy. However, most approximate functionals (such as the commonly used local density approximation [2,3,4]) yield poor approximations to it. The energies of the other occupied orbitals and of the unoccupied orbitals do not have a rigorous correspondence to excitation energies. Nevertheless, it is common practice to compare eigenvalue differences to optical spectra of molecules and solids. Since these comparisons are made using Kohn-Sham eigenvalues obtained from approximate exchange-correlation functionals, it is not clear how much of the discrepancy between theory and experiment would persist if the true Kohn-Sham eigenvalues were to be used. In this paper we show that there is a surprising degree of agreement between the exact ground-state Kohn-Sham eigenvalue differences and excitation energies, for excitations from the highest occupied orbital to the unoccupied orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  2. W. Kohn and L. J. Sham, Phys Rev. 140, A1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  3. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, 1989).

    Google Scholar 

  4. R. M. Dreizler and E. K. U. Gross, Density Functional Theory (Springer-Verlag, Berlin, 1990).

    Book  MATH  Google Scholar 

  5. J. P. Perdew, R. G. Parr, M. Levy and J. L. Balduz, Phys. Rev. Lett. 49, 1691 (1982).

    Article  ADS  Google Scholar 

  6. M Levy, J. P. Perdew and V. Sahni Phys. Rev. B 30, 2745 (1994).

    Google Scholar 

  7. U. von Barth in Electronic Structure of Complex Systems, edited by P. Phariseau and W. M. Temmerman, NATO ASI Series B, vol. 113 (1984).

    Google Scholar 

  8. C. J. Umrigar and X. Gonze, Phys. Rev. A 50, 3827 (1994).

    Article  ADS  Google Scholar 

  9. The wave function used is a minor modification of that in D. E. Freund, B. D. Huxtable and J. D. Morgan, Phys. Rev. A 29, 980 (1984). The precise form of the wave function used is described in Ref. [6].

    Article  ADS  Google Scholar 

  10. C. J. Umrigar and X. Gonze, in High Performance Computing and its Application to the Physical Sciences, proceedings of the Mardi Gras’ 93 Conference, edited by D. A. Browne et al (World Scientific, Singapore, 1993); and unpublished.

    Google Scholar 

  11. C. J. Umrigar, Phys. Rev. Lett. 71, 408 (1993).

    Article  ADS  Google Scholar 

  12. C. J. Umrigar, P. Nightingale and K. J. Runge, J. Chem. Phys. 99, 2865 (1993).

    Article  ADS  Google Scholar 

  13. C. Filippi, C. J. Umrigar and X. Gonze in Theoretical and Computational Chemistry: Recent Developments in Density Functional Theory, edited by J. Seminario (Elsevier, 1996).

    Google Scholar 

  14. G. W. F. Drake in Casimir Forces: Theory and Recent Experiments on Atomic Systems, edited by F. S. Levin and D. A. Micha, (Plenum, New York 1993); G. W. F. Drake and Zong-Chao Yan, Chem. Phys. Lett. 229, 486 (1994).

    Article  ADS  Google Scholar 

  15. G. W. F. Drake in Handbook of Atomic, Molecular, and Optical Physics, edited by G. W. F. Drake (AIP Press, New York, 1996), pp. 154–171

    Google Scholar 

  16. E. Riis, A. G. Sinclair, O. Poulsen, G. W. F. Drake, W. R. C. Rowlwy and A. P. Levick, Phys. Rev. A 49, 207 (1994).; private communication.

    Article  ADS  Google Scholar 

  17. O. Gunnarson and K. Schönhammer, Phys. Rev. Lett. 56, 1968 (1986).

    Article  ADS  Google Scholar 

  18. S. Bashkin and J. D. Stoner, Atomic Energy Levels and Grotrian Diagrams, vol. 1. (North Holland 1975, addendum 1978).

    Google Scholar 

  19. Abdullah Al-Sharif, R. Resta and C. J. Umrigar, unpublished.

    Google Scholar 

  20. A. Görling and M. Levy, Int. J. Quant. Chem, Symp. 29, 93 (1995); Phys. Rev. A 50, 196 (1994).

    Article  Google Scholar 

  21. C.-O. Almbladh and U. von Barth, Phys. Rev. B 31, 3231 (1985).

    Article  ADS  Google Scholar 

  22. S. H. Patil, J. Phys. B 23, 1 (1990); J. Chem. Phys. 95, 4245 (1991).

    Article  ADS  Google Scholar 

  23. C. Filippi, C. J. Umrigar and X. Gonze, unpublished.

    Google Scholar 

  24. Mark E. Casida in Theoretical and Computational Chemistry: Recent Developments in Density Functional Theory, edited by J. Seminario (Elsevier, 1996).

    Google Scholar 

  25. M. Petersilka and E. K. U. Gross, Int. J. Quant. Chem. 30, 1393 (1996); M. Petersilka, U. J. Gossman and E. K. U. Gross, contribution in this volume.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Umrigar, C.J., Savin, A., Gonze, X. (1998). Are Unoccupied Kohn-Sham Eigenvalues Related to Excitation Energies?. In: Dobson, J.F., Vignale, G., Das, M.P. (eds) Electronic Density Functional Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0316-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0316-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0318-1

  • Online ISBN: 978-1-4899-0316-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics